Machine learning approaches for predicting species interactions in dynamic ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.69Keywords:
Machine learning, Species interactions, Dynamic ecosystems, Predictive modeling, Comparative analysis, Performance evaluation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper explores the application of machine learning (ML) techniques in predicting species interactions within dynamic ecosystems. Using a multi-faceted approach, we investigate the effectiveness of various ML algorithms in analyzing species interaction strengths through an example dataset. Visualizations, including bar, line, and pie charts, depict the distribution and patterns of species interactions, providing valuable insights into ecological dynamics. Additionally, a comparative analysis examines the data requirements and characteristics of four ML approaches: Generalized Linear Models (GLM), Classification and Regression Trees (CART), Artificial Neural Networks (ANN), and Evolutionary Algorithms (EA). By synthesizing information from previous studies, we elucidate the strengths and limitations of each ML approach in predicting species interactions. Furthermore, a performance evaluation of these approaches highlights their predictive capabilities across various metrics, including accuracy, precision, recall, and F1 score. Our research methodology provides a comprehensive understanding of the application of ML techniques in ecological research, laying the groundwork for future studies aiming to predict species interactions and advance our understanding of dynamic ecosystems.Abstract
How to Cite
Downloads
Similar Articles
- A.P. Asha Sapna, C. Anbalagan, Towards a better living environment-compressive strength and water absorption testing of mini compressed stabilized earth blocks and fired bricks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Mohammedabrar H. Malek, Hydroxyl-terminated triazine dendrimers mediated pH-dependent solubility enhancement of glipizide across dendritic generations: A comparative investigation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing security of cloud using static IP techniques , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Neha R. Kshatriya, Preeti Nair, Social work students’ views on competencies in human resources , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Hariharan V.S, Phaneendra S, Evaluating the combustion characteristics of methanol-gasoline blends in IC engines , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Manohar, T. P. Vijayakumar, Optimization of gluten-free bread using RSM (Design Expert) to study its textural and sensory properties , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deena Merit C K , Haridass M, Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Ranjeet Kaur, Comparative Study on Covid-19 Vaccines , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Free Energy During Complexation of p-chlorobenzoylthioacetophenone with Some Bivalent Transition Metals , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 40 41 42 43 44 45 46 47 48 49 > >>
You may also start an advanced similarity search for this article.