RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.31Keywords:
Cluster Head Selection, Dynamic Optimization Algorithm, Internet of Things, Network Lifetime ExtensionDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The internet of things (IoT) encompasses extensive networks of interconnected devices, playing a crucial role in various applications. However, managing these networks presents significant challenges, particularly in cluster head selection, which is critical for energy efficiency and sustainability. To eradicate these challenges, this paper combines the capability of routing protocol for low-power and lossy networks (RPL) with an enhanced sandpiper optimization algorithm (e-SOA) to dynamically optimize network configurations. This combination, termed RPL-eSOA, improves energy management and extends network longevity while maintaining robust communication pathways. Through simulation and comparative analysis, RPL-eSOA demonstrates superior performance in enhancing network lifetime and operational efficiency compared to traditional methods. It achieved a 100% packet delivery ratio (PDR) and significantly reduced latency to 475 ms.Abstract
How to Cite
Downloads
Similar Articles
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Regasa Begna, Worku Masho, Wondosan Wondimu, Yaregal Tilahun, Tilahun Bekele, Benyam Tadesse, Haile Negash, Participatory evaluation and demonstration of productive performance of Bovans Brown chicken under village production system in Menit Shasha Woreda, West Omo Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rajeshwar Mukherjee, Uday S. Dixit, Understanding cosmopsychism based on stochastic electrodynamics from the perspective of the Indian knowledge system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Akshay J., G. Mahesh Kumar, B. H. Manjunath, Optimizing durability of the thin white topping applying Taguchi method using desirability function , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vijay Sharma, Nishu, Anshu Malhotra, An encryption and decryption of phonetic alphabets using signed graphs , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.

