
Abstract
The internet of things (IoT) encompasses extensive networks of interconnected devices, playing a crucial role in various applications. 
However, managing these networks presents significant challenges, particularly in cluster head selection, which is critical for energy 
efficiency and sustainability. To eradicate these challenges, this paper combines the capability of routing protocol for low-power and 
lossy networks (RPL) with an enhanced sandpiper optimization algorithm (e-SOA) to dynamically optimize network configurations. This 
combination, termed RPL-eSOA, improves energy management and extends network longevity while maintaining robust communication 
pathways. Through simulation and comparative analysis, RPL-eSOA demonstrates superior performance in enhancing network lifetime 
and operational efficiency compared to traditional methods. It achieved a 100% packet delivery ratio (PDR) and significantly reduced 
latency to 475 ms.
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Introduction
The IoT represents a vast network of interconnected 
devices, ranging from simple sensors to complex systems, 
that communicate and exchange data with each other 
(Sundaravadivazhagan et al., 2021). This network enables a 
wide array of applications across various sectors, including 
healthcare, agriculture, and smart cities, enhancing 
operational efficiency and enabling real-time decision-
making (Chataut et al., 2023). However, the expansion of 
IoT also brings challenges, particularly in managing these 
devices’ energy consumption, as many operate on limited 
battery power (Mohd Aman et al., 2021). Efficient use of 
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energy is crucial in maximizing the lifespan and functionality 
of IoT devices (Kumari et al., 2024).

Energy harvesting in IoT introduces a sustainable 
approach by allowing devices to gather energy from 
their environment, such as solar power, vibrations, or 
thermal differences (Kataria et al., 2024). This technique can 
significantly extend the battery life of devices and reduce 
the need for frequent replacements, which is especially 
beneficial in hard-to-reach or maintenance-intensive areas 
(Pramodhini et al., 2024). Nevertheless, energy harvesting 
alone does not fully solve the energy management issue, as 
energy availability can be inconsistent and depends heavily 
on environmental conditions (Tang et al., 2018). Therefore, 
there is a pressing need to manage this harvested energy 
judiciously, ensuring that IoT devices operate efficiently 
under varying energy conditions.

As IoT networks grow in scale, they become increasingly 
complex, encompassing thousands or even millions 
of nodes (Paolone et al., 2018). This scalability brings 
further challenges, particularly in maintaining network 
performance and managing the vast amounts of data 
transmitted between devices (Dhar Dwivedi et al., 2024). 
The complexity increases the demand for the network’s 
energy resources, making efficient energy management 
and routing protocols essential (Gomez et al., 2023). Here, 
the necessity of optimization algorithms becomes apparent, 
as they can significantly enhance network management 
by optimizing the use of available energy and extending 
the overall network lifetime (Ahmad et al., 2024). These 
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optimization techniques are crucial for sustaining large-scale 
IoT deployments, making them more practical and effective 
across various applications (Abdul et al., 2023).

Motivation and Problem Definition
The rapid growth of IoT networks has underscored a critical 
issue: the efficient management of energy resources across 
extensive networks of devices. While energy harvesting 
provides a pathway to replenish energy autonomously, the 
unpredictable nature of energy availability poses significant 
challenges. Devices often face periods of low energy 
availability, which can compromise their functionality and 
reliability. Additionally, the uneven distribution of energy 
resources across the network can lead to imbalances, where 
some nodes may have surplus energy while others are 
energy-starved.

The problem is further complicated by the mobility 
of nodes within certain IoT applications, such as wearable 
technologies or vehicle networks, which can lead to frequent 
changes in network topology. These dynamics require a 
robust mechanism to ensure that energy consumption 
and network performance are optimized under all 
conditions. Without effective management strategies, 
the potential of IoT systems to operate autonomously 
and sustainably is severely limited. Hence, there is a clear 
need for sophisticated optimization algorithms that can 
dynamically adjust to changing conditions and resource 
levels. Such algorithms must not only manage the energy 
efficiently but also ensure that the network remains robust 
and functional under varying operational demands. This 
necessitates the development of new models and strategies 
that can enhance the energy efficiency of IoT networks while 
maintaining high levels of performance and reliability.

Objectives and Scope of Research
This research aims to address the challenges outlined by 
proposing a novel optimization algorithm that effectively 
manages energy distribution and consumption in IoT 
networks. The following are the objectives of this research 
work:
• To develop a model that optimizes the selection of 

cluster heads in IoT networks.
• To ensure efficient energy use and prolong network 

longevity.
• To dynamically adapt changes in node energy levels and 

network topology.

Organization of the Paper
This paper is structured to provide a clear understanding of 
the proposed solution and its implications in IoT networks. 
It begins with section 2, which reviews related works to 
provide context and background, highlighting previous 
approaches and their limitations. Section 3 presents the 
proposed e-SOA, detailing its methodology, phases, and 
the specific mechanisms it employs for optimizing network 

efficiency. Section 4 discusses the implementation of the 
algorithm and evaluates its performance through various 
simulations. The results are analyzed to demonstrate the 
effectiveness of the e-SOA in extending network lifetime and 
enhancing energy efficiency. Finally, section 5 concludes the 
paper with a summary of the findings, contributions, and a 
discussion on future research directions.

Related Works
A clustering framework integrating intelligent algorithms 
with MCDM techniques was proposed, achieving notable 
improvements over existing models but limited by its 
assumption of two-dimensional node positions (Sahoo et al., 
2024). A strategy for selecting the cluster head that improves 
energy metrics and node longevity by utilizing MDCNN and 
BCMO was devised by Jesi et al. (2024). A fuzzy logic-based 
cluster head selection algorithm was introduced, showing 
significant improvements in network lifetime and energy 
efficiency (Batra et al., 2024). SWARAM was developed using 
OOA for cluster head selection, improving packet delivery 
ratio and network lifetime by 10% (Somula et al., 2024). 
QOJ-LCH was proposed to enhance WSN lifespan and energy 
efficiency by balancing load distribution (Muthukkumar et 
al., 2023). An MDB-based clustering method was proposed, 
improving energy efficiency over PSO and LEACH methods 
(Chanpa et al., 2023). SOA was introduced for IoT networks, 
increasing network lifespan and throughput while reducing 
energy consumption (Sankar et al., 2023).

ESEERP, an enhanced smart energy efficient routing 
protocol, optimizes cluster head selection using a sail fish 
optimizer to enhance network longevity and energy efficiency 
in IoT environments, achieving significant performance  
improvements in terms of energy consumption, bandwidth 
utilization, and packet delivery ratios (Dogra et al., 2022).

Research Gap
From the above literature review, the following are the 
handicaps in existing research:

Static cluster head selection
Current methodologies often rely on static cluster head 
selections, failing to respond adequately to spontaneous 
changes in node status or environmental factors in real-
world IoT applications.

Overlooked energy harvesting integration
There is a noticeable lack of comprehensive strategies that 
combine energy harvesting with dynamic cluster head 
selection and adaptive network reconfiguration to enhance 
energy efficiency and network longevity.

Scalability issues
Existing solutions often struggle to maintain efficiency and 
effectiveness when scaled up, highlighting the need for new 
optimization strategies designed to handle the complexities 
of large-scale, heterogeneous networks.
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Methodology of RPL-eSOA
The integration of sensor networks into the IoT landscape 
necessitates advanced network management techniques 
to tackle the challenges of energy efficiency and network 
longevity. Traditional energy management and routing 
methods often fall short in addressing the dynamic 
and complex nature of IoT networks. This methodology 
introduces RPL-eSOA, a novel solution to optimize cluster 
head selection and adapt dynamically to changing network 
conditions. RPL-eSOA ensures efficient energy distribution 
and robust communication pathways. Ultimately, this 
approach enhances the sustainability and operational 
efficiency of IoT networks.

Inspired by the methodologies outlined in the 
foundational works on energy-efficient routing protocols 
(Dogra et al., 2022) and optimization algorithms in sensor 
networks (Sankar et al., 2023), e-SOA integrates advanced 
optimization techniques with a deep understanding of 
network dynamics. RPL-eSOA leverages the strengths of both 
RPL and e-SOA to enhance network performance and energy 
efficiency. RPL, known for its effective routing in low-power 
and lossy networks, forms a reliable and energy-efficient 
routing topology. e-SOA, on the other hand, optimizes 
cluster head selection based on a composite consideration 
of energy levels, node density, communication overhead, 
and real-time network feedback. This combination facilitates 
a dual-optimization framework where RPL dynamically 
adjusts routing paths based on the evolving topology and 
energy conditions optimized by e-SOA. Figure 1 outlines 
the systematic process of the e-SOA in optimizing IoT 
network configurations. The workflow is divided into several 
key phases: fitness evaluation, migration, attacking, and 
convergence check, leading to the final output of cluster 
heads and network configuration. Each phase is designed 
to iteratively refine and optimize the network, adapting 
dynamically to changing conditions and ensuring robust 
and energy-efficient operations.

Fitness Function
In the proposed work, the fitness function is essential for 
evaluating and selecting the most suitable cluster heads in 
the IoT network. It ensures that nodes with higher energy 
efficiency, lower communication overhead, optimal node 
density, and better communication quality are chosen. This 
dynamic evaluation helps maintain network performance, 
extend network lifetime, and adapt to changing conditions 
in real time. The critical parameters for the fitness function 
are as follows:

Energy efficiency
Prioritizing nodes with higher residual energy for roles that 
demand greater energy expenditure.

Communication overhead
Minimizing the network resources expended in data 
transmission, thus conserving energy.

Node density
Selecting cluster heads in strategically less dense areas of 
the network to avoid bottlenecks.

Media access control (MAC) layer feedback
Incorporating real-time data on signal strength and error 
rates to adjust node roles dynamically.

Rank of node
Ranking the nodes in the IoT environment with help of RPL’s 
expected transmission count (ETX).

Optimization Phases
The RPL-eSOA functions through two distinct operational 
phases, each designed to refine and optimize the network’s 
efficiency and energy utilization. These phases are crucial 
for adapting to dynamic network conditions and achieving 
optimal configurations.

Migration phase
During this initial phase, nodes evaluate their current 
roles and positions within the network based on a 
predefined fitness function, optimizing both intra-cluster 
communication and inter-cluster routing paths facilitated 
by RPL. The nodes evaluate their current roles and positions 
within the network based on a predefined fitness function, 
. The fitness function is computed for each node  as follows:

      (1)
where:

 are the weights assigned to energy 
efficiency, communication overhead, node density, and MAC 
layer feedback, respectively.

,   represent  the energy level , 
communication overhead, node density, and MAC layer 
feedback of node .

 could be a composite of ETX and node rank.
Nodes use this f itness score to determine their 

movement within the network, aiming to enhance their Figure 1: e-SOA workflow diagram
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positioning relative to other nodes. This adjustment is 
aimed at achieving more efficient configurations that can 
handle network demands more effectively. The positions 
are updated according to the following rule:

  (2)

Where  is the current position,  represents the 
change in position derived from the fitness evaluations, and 

 is a scaling factor that moderates the speed and scale of 
position adjustments.

During the migration phase, the routing decisions made 
by the RPL protocol are influenced by the ongoing position 
and role adjustments. RPL adapts its destination-oriented 
directed acyclic graph (DODAG) construction based on 
the updated node positions and fitness scores, enhancing 
the routing efficiency and responsiveness to the changing 
network dynamics.

Attacking phase
This phase is a more targeted optimization process where 
nodes fine-tune their roles and positions based on local 
performance metrics. This phase involves a deeper analysis 
of the local neighborhood around each node to identify 
the most efficient positioning and role adjustments. Nodes 
perform a detailed search around their current best position  

, described by a spiral search pattern that minimizes 
the potential for conflict and maximizes coverage efficiency:

  (3)

where  is a scaling factor that controls the extent of 
movement towards the , and  is a function that 
computes a spiral trajectory from the current position to 
explore nearby positions more thoroughly.

The transition from the migration phase to the attacking 
phase ensures that initial broad optimizations are refined 
through localized, detailed adjustments. This two-step 
process allows the e-SOA to dynamically adapt to changes 
within the IoT network, promoting optimal energy usage 
and enhanced network performance. The optimization 
loop continues until the network achieves stability in its 
configuration, as indicated by minimal changes in the 
positions and roles of the nodes.

Key Components
Each component of the e-SOA fitness function plays a crucial 
role in the holistic optimization of the network:

Energy component
The energy component plays a pivotal role in evaluating 
the suitability of nodes for the role of cluster heads based 
on their energy efficiency, ensuring that nodes with higher 
residual energy are prioritized, thereby enhancing the 
overall network sustainability. İt is denoted as , for a node 
i, quantifies the residual energy of the node relative to its 
initial or maximum energy capacity. This measure is crucial as 

it directly impacts the node’s ability to continue functioning 
effectively over time, especially in roles that require higher 
energy consumption, such as that of a cluster head. The 
energy component is calculated using the following formula:

 
 (4)

Where:
•  of node i: This is the remaining energy 

level of node i at any given point during the network’s 
operation.

• : Represents the maximum energy with 
which the node started, typically the battery capacity 
or the full energy level post a full charge.

The energy component is crucial for ensuring that the 
nodes selected as cluster heads can sustain prolonged 
operational periods, which is vital for maintaining continuous 
network functionality without frequent recharges or 
replacements. This consideration is especially important in 
remote or inaccessible deployment areas where maintenance 
and energy replenishment opportunities are limited.

Overhead component
The overhead component is vital for minimizing the 
communication overhead of each node in a sensor network. 
This optimization enhances network efficiency by prioritizing 
nodes with lower overheads as cluster heads, reducing 
overall resource consumption and boosting performance. 
Overhead component, , for a node , measures the 
communication overhead, which includes resources used 
for network connectivity, routing, and data transmission. 
Reducing these overheads it conserves energy and improves 
network longevity. Furthermore, it reduces network 
collision, and retransmission, optimizing routing and data 
processing across the network. The overhead component 
is represented as given in the following equation:

  (5)

where the communication overhead of node  involves 
its participation in data forwarding, routing, and other 
maintenance tasks.

Density component
To enhance the efficiency of calculating node density in 
sensor networks, especially for large-scale deployments 
where traditional methods may be computationally 
intensive. To overcome this, a novel approach is proposed. 
This method aims to quickly approximate node density using 
a combination of statistical methods and grid-based spatial 
partitioning. It helps to reduce the computational overhead 
typically associated with direct distance calculations for 
every node pair. The proposed method utilizes a grid-based 
spatial partitioning to approximate the local node density 
around a node .
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Grid formation
Divide the total area of the network (e.g. )  
into smaller grid cells of size ( . The size  can be 
chosen based on the desired granularity and the average 
communication range of the nodes.

Node assignment to cells
Assign each node to a corresponding cell based on its 
geographical coordinates modified by the angle-based 
distance estimation (ABDE) (Hadded et al., 2017). This step 
categorizes all nodes into their respective cells, allowing for 
a localized density calculation that more accurately reflects 
communication potentials. The following equation depicts 
the ABDE adjustment in the grid assignment:

  (6)

Utilize  to adjust node assignments, ensuring 
nodes that have better communication compatibility are 
grouped together, even if they are geographically distant.

Density calculation
For any node , located in cell , the density  
is calculated by counting the number of nodes in the 
surrounding cells, including  itself and its immediate 
neighbors. This provides an effective density measure 
that reflects the local clustering of nodes. The following 
equation represents the statistical calculation for density 
estimation:

  (7)

Where:

•  represents the number of nodes in the cell 
at position .

• The denominator  accounts for the total area of 
the  grid cells considered around  .

Incorporating density-aware adaptive clustering (DAAC)
Leverage the calculated densities to form clusters using 
the principles of DAAC. Nodes within high-density areas 
that also have high residual energy become candidates for 
cluster heads. This selection is dynamically adjusted based 
on changes in node density and energy levels. Nodes with 
a density score above a set threshold and sufficient energy 
are elected as cluster heads. Other nodes join the nearest 
cluster based on both geographic proximity and effective 
communication paths calculated using ABDE.

By incorporating ABDE into the grid assignment, the 
method ensures that distances reflect actual communication 
efficacy, enhancing accuracy in density calculations. Reduces 
computational complexity by avoiding direct pairwise 
distance calculations, using a simple summation over a 
limited number of grid cells. Adapting to large-scale and 
dynamic environments where nodes may move, updating 

the grid with node movements is straightforward and 
cost-effective. The representation of the grid cells around a 
central node C(x,y) is given below:

C(x−1,y+1) C(x,y+1) C(x+1,y+1)

C(x−1,y) C(x,y) C(x+1,y)

C(x−1,y−1) C(x,y−1) C(x+1,y−1)

Each cell represents the location of nodes relative to the 
central node C(x,y). The central cell contains the node whose 
density is being calculated. The surrounding cells include 
the immediate neighbors in all directions (north, northeast, 
east, southeast, south, southwest, west, northwest). This 
layout helps in calculating a comprehensive local density 
by considering the nodes in and around the central cell.

MAC layer feedback
The MAC layer feedback, denoted as , for a node i, 
encompasses several key parameters that directly influence 
network performance. These parameters typically include:
• Signal strength : Represents the quality of the 

signal received by node i, which impacts its ability to 
communicate effectively within the network.

• Error rates : Quantifies the rate of errors in the 
packets received by the node, indicating the reliability 
of the communication channel.

• Channel occupancy : Measures the level of traffic 
or congestion in the communication channel used 
by node i, affecting its communication latency and 
throughput.

The MAC layer feedback component  in the fitness 
function of e-SOA is calculated using a weighted sum of the 
normalized values of these parameters:

      (8)

Where:

• , , and  are the weights assigned to the 
signal strength, error rates, and channel occupancy 
respectively, reflecting their relative importance in the 
network’s operational context.

• , , and  represent the maximum observed 
values for signal strength, error rates, and channel 
occupancy, ensuring normalization of these metrics.

RPL metrics component
This component enhances the synergy between RPL’s 
routing strategies and e-SOA’s optimization techniques, 
leading to an adaptive and efficient network architecture. 
The primary purpose of including the RPL metrics 
component is to combine key routing metrics from RPL 
into the decision-making processes of e-SOA, particularly 
in cluster head selection and node positioning. This 
component utilizes RPL-specific metrics ETX, node rank, 
and link quality to adjust the fitness evaluations in e-SOA. 
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These metrics provide real-time insights into the routing 
efficiency and reliability, which are critical for maintaining 
effective communication pathways in low-power and lossy 
network environments.

 
 (9)

where,

•  is the expected transmission count for node , 
indicating the link quality.

•  is the node’s rank within the RPL’s DODAG, 
reflecting its relative position in the routing hierarchy.

•  are the weights assigned to ETX and rank 
metrics, respectively. 

Convergence and Output
The convergence criteria and the output of the RPL-
eSOA algorithm are critical elements that determine the 
effectiveness and efficiency of the network optimization 
process. Here, convergence is defined as the point at which 
further iterations do not yield significant improvements in 
the network’s operational metrics, particularly the fitness 
scores of potential cluster heads. The convergence is 
evaluated based on a combination of factors that indicate 
stability and optimization in the network’s configuration. 
It occurs when both the node optimizations by e-SOA and 
the routing decisions by RPL stabilize, indicating that further 
adjustments yield negligible improvements in network 
performance. Another criterion is the minimal improvement 
in the overall network fitness, defined by a small constant .  
If the improvement in network fitness between iterations 
falls below , the network is deemed to have reached its 
optimal state under current conditions. Mathematically, 
convergence can be expressed as:

  (10)

where  is the change in fitness score of any node i 
considered for a cluster head role between two consecutive 
iterations.

Once e-SOA converges, the output is a robust network 
configuration that includes:

Cluster head selection
A list of nodes designated as cluster heads, selected based 
on their final fitness scores. These nodes are expected to 
manage communication and data aggregation within their 
respective clusters efficiently.

Cluster formation
Based on the final positions and roles of the cluster heads, 
clusters are formed dynamically. Each node in the network is 
assigned to the nearest cluster head, forming a sub-network 
that optimizes local communication and reduces energy 
consumption.

Clusters are typically defined by a proximity metric, 
ensuring that each node is associated with the closest cluster 

head, minimizing the communication distance and, thus the 
energy required for transmission:

  (11)

where  is the cluster headed by node , and  
is the distance between node  and node .

RPL-eSOA Algorithm
The e-SOA improves upon the traditional sandpiper 
optimization algorithm (SOA) by integrating RPL-specific 
metrics into its fitness function. This integration enhances 
routing efficiency and network performance. The e-SOA 
utilizes a two-phase optimization process: the migration 
phase adjusts node positions based on comprehensive 
fitness evaluations, while the Attacking Phase conducts 
detailed spiral searches for optimal cluster head selection. 
Additionally, e-SOA introduces a grid-based spatial 
partitioning method for efficient node density calculation, 
which dynamically makes cluster head selection. These 
enhancements enable e-SOA to adapt to changing network 
conditions, improve energy efficiency, and optimize overall 
IoT network performance. The proposed e-SOA algroithm 
is given below.

Enhanced Sandpiper Optimization Algorithm (e-SOA)

Inputs

• : Set of all sensor nodes

• : Sink location, acting as the root for RPL’s DODAG 

• : Initial energy, communication overhead, 
node density and MAC layer feedback for node 

Outputs

• : Selected cluster heads

Parameters

• : Weights for energy, overhead, density, 
and MAC layer feedback

Algorithm

Initialization

Set routing topology using RPL

Optimization loop
Migration Phase:

Attacking phase:

Fitness evaluation
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Calculate: , , , , 
 using equation 1.

Dynamic cluster head selection

 
#re-evaluating the selection based on changes in node 

positions and network dynamics.

Convergence check
Repeat steps 2-4 until stability or max iterations

#considering changes in the network topology due to 
node mobility.

End

Results and Discussion
The experiments were conducted based on the simulated IoT 
network setup that mimics real-world IoT operations, enabling 
a detailed analysis of the algorithm’s effectiveness under 
varying conditions. The simulation was conducted using 
the Contiki-NG operating system and the Cooja simulator. 
Table 1 represents the parameter settings considered for the 
simulation. Each packet transmitted in the simulation had a 
payload size of 125 bytes. This size was chosen to balance 
the communication overhead and energy consumption. The 
performance of RPL-eSOA was compared against traditional 
algorithms such as ESEERP [35], RPL, PSO, ACO (Ant Colony 
Optimization), and SOA over multiple iterations to assess 
its efficiency and network lifetime improvement. Figure 2 
depicts the screenshot taken from cooja simulator.

To quantify the improvements offered by e-SOA, the 
following metrics were tracked:

Total Energy Consumption
The total energy consumption  of the network during 
the simulation can be calculated by summing up the energy 
used by all nodes over the duration of the simulation. This 
is given by:

  (12)

where  is the total number of nodes,  is the total 
number of time steps or rounds in the simulation, and  
is the energy consumed by node  at time .

Number of Live Nodes Over Time (Network Lifetime)
To track the number of operational (live) nodes over time, 
the function  can be defined as:

  (13)

where  is the remaining energy of node  at time .  
This function counts the number of nodes that still have 
positive energy reserves at each time step. This helps to 
identify the network lifetime.

Data Transmission Efficiency
Data transmission efficiency is assessed by measuring the 
ratio of successfully delivered data packets to the total data 
packets sent. This can be quantified using the efficiency ratio 

, calculated as follows:

 
 (14)

where “successfully delivered packets” are those that reach 
the designated sink node without being lost due to energy 

Table 1: Parameter settings for RPL-eSOA simulation

Parameter Value Description

Total nodes 100 The total number of nodes within the network

Simulation area 100m x 100m The physical dimensions of the area for the simulation

Cluster heads 10 The number of cluster heads selected based on fitness

Communication threshold 10 meters Maximum distance for direct communication

Initial energy range 50 to 100 units Initial energy is assigned randomly to each node

Transmission range 1 to 10 Number of transmissions for each node

Route updates range 1 to 10 Number of route updates performed by each node

Signal strength range 0.5 to 1.0 Strength of the signal for communications

Error rate range 0 to 0.1 Probability of error in transmissions

Channel occupancy range 0 to 1 Level of channel occupancy

Fitness weights Energy: 0.4, Overhead: 0.1, Density: 0.3, 
MAC Feedback: 0.2 Weights used to calculate node fitness

Figure 2: Simulation window for 100 nodes
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Table 2: Efficiency comparison of RPL-eSOA with traditional algorithms

Algorithm PDR (%) Latency (ms) Throughput (Mbps) Energy (joules) Network lifetime 
(nodes alive)

PSO 92 966.67 1.03 1.5 96

SOA 90 975.00 1.02 2.0 90

ACO 90 975.00 1.02 2.0 90

ESEERP [35] 96 - 0.52 0.5 98

RPL-eSOA 100 475.00 2.22 0.2 100

depletion or other network failures, and “total number of 
packets sent” is the total packets attempted to be sent by 
all nodes.

Analysis
The performance analysis of different algorithms is presented 
in Table 2. This table demonstrates the effectiveness of the 
proposed IRPL-sSOA across multiple key metrics compared 
to other methods. The proposed RPL-eSOA algorithm 
demonstrates substantial improvements over traditional 
methods by dynamically optimizing network configurations, 
which effectively balances energy consumption and 
enhances network performance. Specifically, RPL-eSOA 
achieves a 100% packet delivery ratio (PDR), significantly 
reduces latency to 475 ms, and increases throughput to  
2.22 Mbps. These results indicate that RPL-eSOA ensures 
reliable and efficient data transmission, which is crucial for 
real-time applications in IoT networks.

Furthermore, the energy efficiency of RPL-eSOA is 
evident, with an energy consumption of only 0.2 joules, 
which is substantially lower than that of other algorithms 
like PSO, SOA, and ACO. This efficient energy management 
translates into a prolonged network lifetime, with all 100 
nodes remaining operational throughout the simulation. 

One of the primary advantages of RPL-eSOA is its dual-
phase approach to optimization, comprising the migration 
and attacking phases. This dual-phase strategy ensures that 
both broad and localized adjustments are made to improve 
network configurations. The migration phase allows nodes 

Figure 3: Comparative results of energy consumption and network 
lifetime Figure 4: Comparative results of PDR, latency and throughput

to reposition themselves based on a comprehensive fitness 
function that evaluates energy levels, communication 
overhead, and node density. This phase ensures that nodes 
are positioned optimally to minimize energy consumption 
and enhance communication efficiency. The attacking 
phase then fine-tunes these positions through localized 
adjustments, further optimizing the network’s performance 
by refining node roles and their spatial distribution.

This comprehensive approach not only extends the 
operational lifespan of IoT networks but also enhances their 
reliability and scalability, making RPL-eSOA a superior choice 
for diverse IoT applications, particularly those deployed 
in remote or maintenance-intensive environments. The 
comparative analysis given in Table 1 is represented in the 
chart as depicted in Figures 3 and 4. İt highlights significant 
differences in performance metrics. 

Algorithm Complexity
The computational complexity of the proposed RPL-eSOA 
algorithm is an essential factor in assessing its practical 
applicability and efficiency in sensor network environments. 
The complexity of e-SOA derives primarily from its iterative 
process involving fitness evaluation, cluster head selection, 
and the dynamic adjustment of network configuration. 
Each of these components contributes to the overall 
computational demand of the algorithm.

Fitness evaluation
The fitness of each node is calculated based on multiple 
parameters, including energy, overhead, density, and MAC 
layer feedback. The complexity for calculating the fitness 
of one node is O(1), as it involves constant time arithmetic 
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operations. Therefore, the complexity for evaluating all n 
nodes in the network is O(n).

Cluster head selection
After calculating fitness scores, the algorithm selects cluster 
heads based on these scores. The selection process involves 
sorting the fitness scores to identify the top-performing 
nodes as cluster heads. Sorting typically has a complexity 
of .

Cluster formation and optimization phases
Post cluster head selection, e-SOA adjusts node positions 
and refines cluster boundaries based on the migration 
and attacking phases, which involve re-evaluating node 
positions and fitness. This can be seen as a form of iterative 
optimization where each iteration’s complexity depends on 
the number of nodes and their respective cluster members. 
Assuming each node recalculates its position relative to 
k nearest neighbors, the complexity for this step in each 
iteration can approximate .

Convergence check
At each iteration, the algorithm checks if the change in 
the configuration has stabilized (based on predefined 
thresholds). This check is , as it requires a pass through 
each node’s current and previous fitness scores.

Overall complexity
Combining these factors, the per-iteration complexity 
of e-SOA can be estimated as . If the 
algorithm converges after t iterations, the total complexity 
is . The dominant term in this complexity 
expression is typically , due to the sorting operation 
for selecting cluster heads. However, the factor k (the average 
number of neighbors considered in local optimization 
phases) and the number of iterations t also play significant 
roles in scaling the complexity, especially in dense networks 
or under dynamic conditions where multiple iterations are 
needed to achieve convergence.

The derived complexity indicates that while e-SOA is 
efficient for moderate-sized networks, its scalability to 
very large sensor networks requires careful consideration 
of the parameters k and t. Optimizations in the algorithm’s 
design, such as limiting the number of iterations or reducing 
the neighborhood size k for local optimizations, can help 
manage and potentially reduce the computational load, 
making e-SOA more practical for larger deployments.

Conclusion
The RPL-eSOA methodology successfully addresses the 
challenges of energy efficiency and reliable routing in IoT 
networks. By combining RPL with the e-SOA, this study 
has demonstrated significant improvements in network 
performance. The proposed algorithm achieved a 100% 
PDR and reduced latency to 475 ms, indicating efficient 
and reliable data transmission. Additionally, the energy 

consumption was minimized to 0.2 joules, substantially 
enhancing the network’s operational lifespan by keeping 
all 100 nodes active throughout the simulation. These 
results highlight the effectiveness of RPL-eSOA in optimizing 
energy usage and maintaining robust communication 
pathways, making it a valuable solution for sustainable 
IoT deployments in various applications. In the future, 
the potential for applying e-SOA in real-world scenarios 
promises substantial benefits for IoT deployments, 
particularly in smart cities and industrial IoT applications, 
where managing energy effectively is crucial to operational 
success and sustainability.
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