Adoption of artificial intelligence and the internet of things in dental biomedical waste management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.21Keywords:
Artificial Intelligence, Biomedical Waste Management, Dental hospital, Internet thingsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The production of waste is an ongoing activity that must be managed efficiently to protect both the environment and the health of the general population. Therefore, proper management of waste from dental care is essential in protecting the environment's health, and it should become an inherent part of dental services. This study’s primary objective was to use artificial intelligence in dental biomedical waste management. The goal of this project was to develop an automated technique for categorizing dental trash to enhance the process of managing biological waste. In the proposed research, the Support Vector Machine classifier has been regarded as the most effective method of classification for a dataset of Euclidean size. The most effective classifier used in the model is a support vector machine (with an accuracy of 96.5%, 95.9% specificity, and 95.3% sensitivity) when classifying the different types of garbage. The categorization is accomplished through machine learning techniques, to accurately separate waste into recycling categories, precisely four categories for dental biomedical waste. Based on the findings of these trials, This method has the potential to be used for garbage sorting and classification on different scales, which might aid in the scientific disposal of biological waste.Abstract
How to Cite
Downloads
Similar Articles
- A. R. Jasmine Begum, M. Parveen, S. Latha, IoT based home automation with energy management , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Syam Sundar. S, Direct reuse of scour and bleach effluent water for cotton knitted fabrics , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- N Harini, N Santhi, Challenges and opportunities in product development using natural dyes , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Dr. (Mrs.) Sushil Gupta, Hemant Garg, Pedigree Analysis Of Some Hereditary Diseases in The Successive Five Generations Of A Family Of Punjab With Special Reference To Syndactyly , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- ARVIND MISHRA , 1SHUBHA NIGAM, CPM TRIPATHI, ARSENIC CONTAMINATION OF GROUND WATER IN ENDEMIC AREA OF UTTAR PRADESH: A CASE STUDY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- SHAHID SAMI SIDDIQUE, RAM BABU, INSECT PEST MANAGEMENT OF TEMPERATE FRUIT CROPS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- M.V. RADHAKRISHNAN, E. SUGUMARAN, EFFECT OF A BIODEGRADABLE SUBSTRATE SUGARCANE BAGASSE ON EGG AND SPERM QUALITY OF THE CATFISH, CLARIAS BATRACHUS (LINN.) , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- S. K. Mishra, BIOREMEDIATION: A BIOTECHNOLOGICAL APPROACH TOWARD ENVIRONMENTAL MANAGEMENT , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Shahid S. Siddique, Mohd Arif, Ram Babu, Kanchan Chauhan, Trapti Agarwal, EFFICACY OF TRICHOGRAMMA CHILONIS ISHII FOR THE MANAGEMENT OF CHILO AURICILIUS ON SUGARCANE IN DIFFERENT SUGAR MILL AREAS OF THE UDHAM SINGH NAGAR & UTTAR PRADESH. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
<< < 21 22 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.

