Adoption of artificial intelligence and the internet of things in dental biomedical waste management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.21Keywords:
Artificial Intelligence, Biomedical Waste Management, Dental hospital, Internet thingsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The production of waste is an ongoing activity that must be managed efficiently to protect both the environment and the health of the general population. Therefore, proper management of waste from dental care is essential in protecting the environment's health, and it should become an inherent part of dental services. This study’s primary objective was to use artificial intelligence in dental biomedical waste management. The goal of this project was to develop an automated technique for categorizing dental trash to enhance the process of managing biological waste. In the proposed research, the Support Vector Machine classifier has been regarded as the most effective method of classification for a dataset of Euclidean size. The most effective classifier used in the model is a support vector machine (with an accuracy of 96.5%, 95.9% specificity, and 95.3% sensitivity) when classifying the different types of garbage. The categorization is accomplished through machine learning techniques, to accurately separate waste into recycling categories, precisely four categories for dental biomedical waste. Based on the findings of these trials, This method has the potential to be used for garbage sorting and classification on different scales, which might aid in the scientific disposal of biological waste.Abstract
How to Cite
Downloads
Similar Articles
- Dushyant Dave, Naresh Vyas, Impact of Textile Effluents on Soil in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Rashmi Chandra, Afroz Alam, Phytochemical Analysis Using X-ray Diffraction Spectroscopy (XRD) and GC-MS Analysis of Bioactive Compounds in Cucumis sativus L. (Angiosperms; Cucurbitaceae) , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Nabab Ali, Equabal Jawaid, Spatial Insect Biodiversity and Community Analysis in Selected Rice Fields of North Bihar , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Hem Chandra Pant, Srishti Jalal, Indra Rautela, Yunus Ali, Anjali Thapa, Pragya Verma, Harsh Vardhan Pant, Naveen Gaurav, A Review on Endangered Medicinal Plant Nardostachys jatamansi: An Important Himalayan Herb , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Maj Neerja Masih, E.S. Charles, Study of Rhodotorula glutinis growth and lipid production using low cost substrates , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Suresh Kumar, AGRO-WASTE MANAGEMNT BY VERMICOMPOSTING USING EISENIA FETIDA AND PERIONYX SANSIBARICUS EARTHWORMS , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rama Shankar Dubey, M.A. Naidu, Ajay Kumar Shukla, Awadhesh Kumar Shukla, Manish Kumar, Sonia Verma, Pramod Kumar Mourya, Application of Bioactive Molecules in the Treatment and Management of Type-1 Diabetic Disease , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- B.P. Singh, Manju Yadav, Afforestation and Economic Upgradation of Wastelands Reclamation in Ganga-Yamuna Doab , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Alok Malviya, Multiple Utilities of Mushrooms , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 22 23 24 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.

