Adoption of artificial intelligence and the internet of things in dental biomedical waste management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.21Keywords:
Artificial Intelligence, Biomedical Waste Management, Dental hospital, Internet thingsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The production of waste is an ongoing activity that must be managed efficiently to protect both the environment and the health of the general population. Therefore, proper management of waste from dental care is essential in protecting the environment's health, and it should become an inherent part of dental services. This study’s primary objective was to use artificial intelligence in dental biomedical waste management. The goal of this project was to develop an automated technique for categorizing dental trash to enhance the process of managing biological waste. In the proposed research, the Support Vector Machine classifier has been regarded as the most effective method of classification for a dataset of Euclidean size. The most effective classifier used in the model is a support vector machine (with an accuracy of 96.5%, 95.9% specificity, and 95.3% sensitivity) when classifying the different types of garbage. The categorization is accomplished through machine learning techniques, to accurately separate waste into recycling categories, precisely four categories for dental biomedical waste. Based on the findings of these trials, This method has the potential to be used for garbage sorting and classification on different scales, which might aid in the scientific disposal of biological waste.Abstract
How to Cite
Downloads
Similar Articles
- Esther Princess G, Navigating the challenges of moonlighting: A study of employee experiences in the FMCG sector in India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Theophilus Deenadayal, Tarun Jain, Floristic composition in Paramananda Devara Gudda A sacred grove at Lingadahalli Village Devadurga Taluk Raichur District Karnataka, India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Venkatesh R, A study on women empowerment by enhancing saving capabilities – through self-help groups , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Trust-based symmetric game theory for physical layer security in wi-fi communication , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Mayur Vyas, Piyush Mehta, The sentimental and financial journey of women navigating e-commerce , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Jadhav Girish Vasantrao, Chirag Patel, AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Bayelign Abebe Zelalem, Ayalew Ali Abebe, Dividend policy and banks’ performance: Assessing the relevance versus irrelevance theory , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Global student mobility from Southeast Asia and South Asia: Trends, challenges, and policy interventions , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Hannah Ayaba Tanye, Henry Akwetey Matey, Isaac Asampana, Albert Akanlisikum Akanferi, Douglas Yeboah , Augustina Dede Agor, Assessing the information security awareness among Ghanaian University students , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Shanmuganathi Ayyankalai, Srinivasaragavan Subburaj, Prasanna Kumari Nataraj, Measuring the research productivity on environmental toxicology: A scientometric study , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
<< < 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.

