A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.19Keywords:
Deregulations, LS-Local source, MPFO-Modified pathfinder, RSDS-Radial Structure distribution system, RFO-Red fox optimization, GA–GeneticDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Indian power sector is a large and complex network. Maintaining that complex network with the present regulatory format is very difficult for the government as well as transco and discom companies in terms of cost, efficiency, and reliability. That is why the government encourages deregulation in the power sector. One of the deregulation concepts is the integration of local sources into the distribution network. While integrating local sources into the system, several challenges come up, like voltage fluctuations and losses, safety and stability, protection coordination, and mitigation strategies. From those problems, one of the problems is deciding ‘the right place with the right size’ for the local source in RSDS. This work proposes a modified pathfinder optimization algorithm that has a fast convergence rate and the best balance between exploration and mining ability compared to other methods and previous PFOs. Applying MPFO to the IEEE-12 and IEEE-33 test systems to find the optimal place and size of the local source with the help of VSI and LSF. Compare other traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Prabu Gopal, M. Jeyaseelan, Familial support of rural elderly in indian family system: A sociological analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R. P. Singh, R. Chandra, Bikrmaditya ., Effect of Nipping on Growth and Yield of Chickpea (Cicer Aritinum L.) Under Dryland Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Deepa H. Dwivedi, Rubee Lata, R. B. Ram, EFFECT OF BIO-FERTILIZER AND ORGANIC MANURES ON YIELD AND QUALITY OF GUAVA CV. RED FLESHED , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.