A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.19Keywords:
Deregulations, LS-Local source, MPFO-Modified pathfinder, RSDS-Radial Structure distribution system, RFO-Red fox optimization, GA–GeneticDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Indian power sector is a large and complex network. Maintaining that complex network with the present regulatory format is very difficult for the government as well as transco and discom companies in terms of cost, efficiency, and reliability. That is why the government encourages deregulation in the power sector. One of the deregulation concepts is the integration of local sources into the distribution network. While integrating local sources into the system, several challenges come up, like voltage fluctuations and losses, safety and stability, protection coordination, and mitigation strategies. From those problems, one of the problems is deciding ‘the right place with the right size’ for the local source in RSDS. This work proposes a modified pathfinder optimization algorithm that has a fast convergence rate and the best balance between exploration and mining ability compared to other methods and previous PFOs. Applying MPFO to the IEEE-12 and IEEE-33 test systems to find the optimal place and size of the local source with the help of VSI and LSF. Compare other traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Manikannan Palanivel, Alaudeen A, Pandiyan K. S, Sivaprakasam P, Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Dharmendra Kumar, Equabal Jawed, SEASONAL ZOOPLANKTON COMMUNITY STRUCTURE OF SHATIYA WETLAND IN GOPALGANJ DISTRICT OF BIHAR , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Ratnakaram Raghavendra, Saila K. A. Reddy, Exploring cosmic ray energy loss mechanisms: Insights from Bethe-Bloch, modified bethe-bloch, and inverse compton scattering equations , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Amanda Q. Okronipa, Jones Y. Nyame, Adoption of health information systems in emerging economies: Evidence from Ghana , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. R. Jasmine Begum, M. Parveen, S. Latha, IoT based home automation with energy management , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Amresh Kumar Singh, Manjit Singh Chhetri, Pushyamitra Mishra, Toughness and Ductile Brittle Transition Temperature of Different Mineral Filler Reinforced TPOs Composites , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Maya Kumari, Vikas Y Patade, Z Ahmad, TRANSGENIC APPROACH TOWARDS DEVELOPMENT OF COLD STRESS TOLERANT VEGETABLES FOR HIGH ALTITUDE AREAS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.