A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.19Keywords:
Deregulations, LS-Local source, MPFO-Modified pathfinder, RSDS-Radial Structure distribution system, RFO-Red fox optimization, GA–GeneticDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Indian power sector is a large and complex network. Maintaining that complex network with the present regulatory format is very difficult for the government as well as transco and discom companies in terms of cost, efficiency, and reliability. That is why the government encourages deregulation in the power sector. One of the deregulation concepts is the integration of local sources into the distribution network. While integrating local sources into the system, several challenges come up, like voltage fluctuations and losses, safety and stability, protection coordination, and mitigation strategies. From those problems, one of the problems is deciding ‘the right place with the right size’ for the local source in RSDS. This work proposes a modified pathfinder optimization algorithm that has a fast convergence rate and the best balance between exploration and mining ability compared to other methods and previous PFOs. Applying MPFO to the IEEE-12 and IEEE-33 test systems to find the optimal place and size of the local source with the help of VSI and LSF. Compare other traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Navjot Singh, Sultan Singh, Demographic perception of customers towards dairy marketing practices: An empirical study , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nabab Ali, Equabal Jawaid, Spatial Insect Biodiversity and Community Analysis in Selected Rice Fields of North Bihar , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Maj Neerja Masih, E.S. Charles, Study of Rhodotorula glutinis growth and lipid production using low cost substrates , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ravi Kumar P, C. Gowri Shankar, Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.