A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.19Keywords:
Deregulations, LS-Local source, MPFO-Modified pathfinder, RSDS-Radial Structure distribution system, RFO-Red fox optimization, GA–GeneticDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Indian power sector is a large and complex network. Maintaining that complex network with the present regulatory format is very difficult for the government as well as transco and discom companies in terms of cost, efficiency, and reliability. That is why the government encourages deregulation in the power sector. One of the deregulation concepts is the integration of local sources into the distribution network. While integrating local sources into the system, several challenges come up, like voltage fluctuations and losses, safety and stability, protection coordination, and mitigation strategies. From those problems, one of the problems is deciding ‘the right place with the right size’ for the local source in RSDS. This work proposes a modified pathfinder optimization algorithm that has a fast convergence rate and the best balance between exploration and mining ability compared to other methods and previous PFOs. Applying MPFO to the IEEE-12 and IEEE-33 test systems to find the optimal place and size of the local source with the help of VSI and LSF. Compare other traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Gulshan Makkad, Lalsingh Khalsa, Vinod Varghese, Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vijaykumar S. Kamble, Prabodh Khampariya, Amol A. Kalage, Application of optimization algorithms in the development of a real-time coordination system for overcurrent relays , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Shanmuganathi Ayyankalai, Srinivasaragavan Subburaj, Prasanna Kumari Nataraj, Measuring the research productivity on environmental toxicology: A scientometric study , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

