Sum perfect cube labeling of graphs
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.57Keywords:
Sum perfect cube graphs, Graph labeling, Combinatorial mathematics, Number theory, Graph theory, Mathematical graphs, Cube labelingDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper investigates sum-perfect cube graphs, defined as graphs with a bijection .Abstract
Where is the number of vertices. For each edge , a function is defined by . If is injective, is termed a Sum perfect cube labeling. The study focuses on identifying graphs where all edges permit such a labeling, termed sum-perfect cube graphs. This paper explores the properties and classifications of these graphs.
How to Cite
Downloads
Similar Articles
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Swetadri Samadder, Analyzing the impact of COVID-19 on global stock markets: An international comparative analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nitika, Kuldeep Chaudhary, A critical review of social media advertising literature: Visualization and bibliometric approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shiv Kumar, Vinay Chauhan, Empowering Indian consumers to embrace electric vehicles through the unified theory of acceptance and use of technology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.

