A PPR-based energy-efficient VM consolidation in cloud computing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.17Keywords:
Cloud environment, Energy consumption, Energy-efficient approach, VM consolidation, VM migrationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The tendency to do more jobs while consuming less energy is crucial to energy efficiency in the cloud environment. To use less energy while performing more tasks at the best throughput, this study provides an energy-efficient technique (PPR_DWMMT_1.1) for VM consolidation in a cloud domain. Our approach uses the PPR to determine the upper threshold for overload detection and the lower threshold for underload detection. Additionally, PPR_DWMMT_1.1 considers the overall workload utilisation of the data centre when selecting a lower threshold, which could reduce VM migrations. Our proposed method, PPR DWMMT 1.1, is compared to the simulation results of the four reference techniques, IQR_MMT_1.5, LR_MC_1.2, MAD_MU_2.5, and THR_RS_0.8. Our solution has been demonstrated to use less energy, trigger fewer host shutdowns and live migrations, and achieve the best performance when compared to the other four approaches.Abstract
How to Cite
Downloads
Similar Articles
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pooja Soni, Vikramaditya Dave, Sujit Kumar, Hemani Paliwal, A comparative study of AI-driven techno-economic analysis for grid-tied solar PV-fuel cell hybrid power systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Jivesh Jha, Sonia D Sharma, Role of law to combat ecological imbalance in Nepal , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Mohanapriya Jayapal, Hema Jagadeesan, Plant-microbe-dye interaction during rhizoremediation , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- A. Rukmani, C. Jayanthi, Trust and security in wireless sensor networks: A literature review of approaches for malicious node detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.