A PPR-based energy-efficient VM consolidation in cloud computing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.17Keywords:
Cloud environment, Energy consumption, Energy-efficient approach, VM consolidation, VM migrationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The tendency to do more jobs while consuming less energy is crucial to energy efficiency in the cloud environment. To use less energy while performing more tasks at the best throughput, this study provides an energy-efficient technique (PPR_DWMMT_1.1) for VM consolidation in a cloud domain. Our approach uses the PPR to determine the upper threshold for overload detection and the lower threshold for underload detection. Additionally, PPR_DWMMT_1.1 considers the overall workload utilisation of the data centre when selecting a lower threshold, which could reduce VM migrations. Our proposed method, PPR DWMMT 1.1, is compared to the simulation results of the four reference techniques, IQR_MMT_1.5, LR_MC_1.2, MAD_MU_2.5, and THR_RS_0.8. Our solution has been demonstrated to use less energy, trigger fewer host shutdowns and live migrations, and achieve the best performance when compared to the other four approaches.Abstract
How to Cite
Downloads
Similar Articles
- Ratnakaram Raghavendra, Saila K. A. Reddy, Exploring cosmic ray energy loss mechanisms: Insights from Bethe-Bloch, modified bethe-bloch, and inverse compton scattering equations , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Vaibhav, Raj K Tiwari, Low power three-stage OTA using reverse nested frequency compensation without nulling resistor , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Anbarasi, K. Anitha, S. Hemalatha, A study on energy sum of dominating sets in East Indian states , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Pooja Soni, Vikramaditya Dave, Sujit Kumar, Hemani Paliwal, A comparative study of AI-driven techno-economic analysis for grid-tied solar PV-fuel cell hybrid power systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vinodini R, Ritha W, Sasitharan Nagapan, The green inventory model for sustainable environment that includes degrading products and backordering with integration of environmental cost , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

