Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.17Keywords:
Transient response, thick disc, fractional-order derivative, temperature distribution, thermal stress, integral transformDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The study investigates thermal interactions in a two-dimensional time fractional-order thermoelastic problem in a homogeneous, isotropic, and perfectly conducting thick annular disc subjected to a point impulsive sectional heat source. We utilize unconventional integral transformation techniques to study the thermoelastic response of a disc, in which an internal heat source is generated according to the linear function of the temperature and radiation-type boundary conditions. The time fractional-order thermoelastic theory is used to determine temperature, displacement, and stresses through a series of Bessel functions. Numerical calculations analyze fractional-order parameters on aluminum discs, incorporating time-based fractional derivatives into field equations for practical engineering scenarios, enhancing thermal properties analysis.Abstract
How to Cite
Downloads
Similar Articles
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sanskriti Gandhi, Usha Asnani, Srivalli Natarajan, Chinmay Rao, Richa Agrawal, Evaluation of stability of fixation using conventional miniplate osteosynthesis in comminuted and non-comminuted Le Fort I, II, III fractures – A dynamic finite element analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Senthil Murugan C, Vijayabalan Dhanabal, Sukumaran D, Suresh G, Senthilkumar P, Analysis of distributions using stochastic models with fuzzy random variables , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kumar Kapil, Chaudhary Sachin, Malik P. V., BIOACCUMULATION OF HEAVY METALS IN ORGANS OF FRESH WATER FISH CLARIAS BATRACHUS (MANGUR) , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Krutuja S. Gadgil, Prabodh Khampariya, Shashikant M. Bakre, Investigation of power quality problems and harmonic exclusion in the power system using frequency estimation techniques , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Vikas Yadav, Parul Nangia, Effect of Bisphenol-A Exposure on Activity of Antioxidant Enzymes in Channa punctatus and Alleviation with Vitamin C , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Poonam Singh, Seema Rani Sarraf, Pranay Kumar Tripathi, Chandini Gupta, Progressive Muscular Relaxation in Schizophrenic Patients : A Pilot Study , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- N. Suresh Kumar, S.N.Md. Assarudeen, Solving neutrosophic multi-objective linear fractional programming problem using central measures , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Lakhan Kumar Tiwari, Nalini Bhardwaj, Fish Diversity and Spatial Distribution in Gandak Floodplains of Gopalganj District, Bihar (India) , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Shri Prakash, Sunil Kumar, Population Dynamics of Sarus Crane (Grus antigone antigone, Linn.) in and around Alwara Lake of district - Kaushambi (U.P.), India , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Nitin Chandel, Lalsingh Khalsa, Sunil Prayagi, Vinod Varghese, Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper