Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.17Keywords:
Transient response, thick disc, fractional-order derivative, temperature distribution, thermal stress, integral transformDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The study investigates thermal interactions in a two-dimensional time fractional-order thermoelastic problem in a homogeneous, isotropic, and perfectly conducting thick annular disc subjected to a point impulsive sectional heat source. We utilize unconventional integral transformation techniques to study the thermoelastic response of a disc, in which an internal heat source is generated according to the linear function of the temperature and radiation-type boundary conditions. The time fractional-order thermoelastic theory is used to determine temperature, displacement, and stresses through a series of Bessel functions. Numerical calculations analyze fractional-order parameters on aluminum discs, incorporating time-based fractional derivatives into field equations for practical engineering scenarios, enhancing thermal properties analysis.Abstract
How to Cite
Downloads
Similar Articles
- Nitin Chandel, Lalsingh Khalsa, Sunil Prayagi, Vinod Varghese, Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Anand Mishra, Manish Kumar Dube, Harnam Singh Lodhi, Ambrina Sardar Khan, Studies on behavior and morphological changes in freshwater fish, Channa punctatus, under the exposure of untreated sewage water , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anjani Kumar Shukla, Sadguru Prakash, Enzymes as Biomarkers of Pollution Stress in Channa punctatus (Bloch 1793) collected from Sawan nallaha, Balrampur, U.P. , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Maya Kumari, Vikas Y Patade, Z Ahmad, TRANSGENIC APPROACH TOWARDS DEVELOPMENT OF COLD STRESS TOLERANT VEGETABLES FOR HIGH ALTITUDE AREAS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P.L. Parmar, P.M George, Effect of process parameters on concentricity in CNC turning operation using design of experiment , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Heena Gulia, Sunder Singh Arya, Neha Yadav, Ajay Kumar, Monika Janaagal, Mamta Sawariya, Naveen Kumar, Himanshu Mehra, Sunil Yadav, Sudershan Singh, Reetu Verma, Strategies for adaptations and mitigation of abiotic stresses in crops: A review , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Nitin Chandel, Lalsingh Khalsa, Sunil Prayagi, Vinod Varghese, Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

