A framework for generating explanations of machine learning models in Fintech industry
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.33Keywords:
Artificial Intelligence, Machie Learning, Fintech, E-payment, Explainable AI interpretable AI models, Cybersecurity, Attack types, Decision-making, Botanical classification.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Artificial Intelligence is making significant inroads into various aspects of business and life bringing the transformation in many ways. The convolution of technology in finance is often called FINTECH rapidly growing area of transformation. In the FINTECH industry, AI can automate several financial processes and services such as fraud detection, customer services, credit assessment, price predictions, customer churning, trading services, risk management, underwriting, market forecasting. These processes and services are critical to financial sectors such as banking, insurance, currency, stock and commodity markets, wealth management, payment clearing houses, payment regulators etc. Regulations control these processes and should be transparent in their operations. AI models are inherently opaque in their outcomes and unable to be fully plugged into the financial processes and services. Explainable AI is the key area of research that can help to provide transparency to enable these AI models as fully operational business models to automate financial products and services. In this paper we will broadly outline the framework of explainable artificial intelligence (XAI) in finance sectors and services. We then look into one use case of credit assessment and develop an XAI framework to provide transparent outcomes from the AI models.Abstract
How to Cite
Downloads
Similar Articles
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sirajum Munira Priety, Farhan Bin Manjur, AI Driven Approach in Smart Manufacturing in Bangladesh , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A Deterministic Inventory Model with Automation-Enabled Processes for Defective Item Management , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sharanya Unnikrishnan, Eldhose Thomas, Arunima Dey, AI-Powered NLP in Vernacular Public Relations: Opportunities, Challenges, and Ethical Implications for India’s Multilingual Landscape , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- M. Deepika, I Antonitte Vinoline, Optimization of an Advanced Integrated Inventory Model Considering Shortages and Deterioration across Varying Demand Functions , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper

