A framework for generating explanations of machine learning models in Fintech industry
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.33Keywords:
Artificial Intelligence, Machie Learning, Fintech, E-payment, Explainable AI interpretable AI models, Cybersecurity, Attack types, Decision-making, Botanical classification.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Artificial Intelligence is making significant inroads into various aspects of business and life bringing the transformation in many ways. The convolution of technology in finance is often called FINTECH rapidly growing area of transformation. In the FINTECH industry, AI can automate several financial processes and services such as fraud detection, customer services, credit assessment, price predictions, customer churning, trading services, risk management, underwriting, market forecasting. These processes and services are critical to financial sectors such as banking, insurance, currency, stock and commodity markets, wealth management, payment clearing houses, payment regulators etc. Regulations control these processes and should be transparent in their operations. AI models are inherently opaque in their outcomes and unable to be fully plugged into the financial processes and services. Explainable AI is the key area of research that can help to provide transparency to enable these AI models as fully operational business models to automate financial products and services. In this paper we will broadly outline the framework of explainable artificial intelligence (XAI) in finance sectors and services. We then look into one use case of credit assessment and develop an XAI framework to provide transparent outcomes from the AI models.Abstract
How to Cite
Downloads
Similar Articles
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- G Vanitha, M Kasthuri, A robust feature selection approach for high-dimensional medical data classification using enhanced correlation attribute evaluation , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper

