Study and optimization of process parameters for deformation machining stretching mode
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.31Keywords:
Deformation machining, Surface roughness, Hardness, Grey Relation Analysis, Analysis of Variance (ANOVA)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Monolithic thin-structure parts with intricate geometric designs are employed in a variety of aeronautical, medical, marine, and automotive applications, which include the moldlines of the fuselage, turbine blades, impellers, avionic shelves, irregular fins, prostheses, bone and joint support, and skull plates. The deformation machining process is the solution to this challenging and difficult-to-manufacture high-quality components with intricate narrow geometries at competitive prices. The aim of the present study is to assess the effect of process parameters of the deformation machining process wherein a thin, floor-like structure is created by milling and is then formed using a single-point incremental forming tool. Investigation involves the design and development of tooling required for the process followed by feasibility checking of the process. To examine the impact of different process parameters on the process response, the experiments were carried out using the design of experiments. The findings of this study indicate that different process parameters, including spindle speed, tool diameter, incremental step depth, and feed rate, have a substantial impact on the process response, like thickness, surface finish, and hardness. Uneven and non-uniform surface patterns during SEM indicate that it is needed to examine the impact of process parameters. This research involves the feasibility study of a new hybrid technique of deformation machining. Conventionally, a metallic structure is produced by joining various components through welding or by fastening. These methods require additional expenditure on equipment, storage, floor space, human resources, etc., with higher lead time. Joining increases weight and reduces fatigue strength. The creation of monolithic structures can eliminate all these disadvantages.Abstract
How to Cite
Downloads
Similar Articles
- Minas M. Ali, Farah H. Alenezi, Nora F. Alfayyadh, Sara Y. Alhassoun, Rahaf M. Alanzi, Waseem Radwan, Conservative esthetic dentistry in Riyadh – Saudi Arabia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Maysam A. Khabisi, Azar B. Masoudzade, Neda F. Rad, On the effectiveness of receiving teacher and peer feedback as a mediator on Iranian English as a Foreign Language learners’ writing skill: Mobile-mediated vs. direct instruction , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V.Samuthira Pandi, B. R. Senthil kumar, M Anusuya, Annu Dagar, Synthesis and characterization of ZnO, ZnO doped Ag2O nanoparticles and its photocatalytic activity , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rajeshwar Mukherjee, Uday S. Dixit, Understanding cosmopsychism based on stochastic electrodynamics from the perspective of the Indian knowledge system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Akshay J., G. Mahesh Kumar, B. H. Manjunath, Optimizing durability of the thin white topping applying Taguchi method using desirability function , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sivasankar G. A, Study of hybrid fuel injectors for aircraft engines , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jasleen Kaur, Sultan Singh, Assessing the Impact of Stress on the Health and Job Performance of Employees in Indian Banks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.