Improvement of data analysis and protection using novel privacy-preserving methods for big data application
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.30Keywords:
Apache Spark, Big Data, ChiSqSelector, Intrusion detection, Support vector machine (SVM)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Due to the increasing volume of data, the importance of data analysis systems has become more critical. An intrusion detection system is a type of software that monitors and analyzes the data collected by a network or system. Due to the increasing volume of data collected in the medical field, it has become harder for traditional methods to detect unauthorized access and manipulation of the data. To advance the efficiency of big data analysis, various techniques are used in IDS. This paper proposes a method that combines the deep learning network and proposed optimization algorithm. The goal of this paper is to develop a classification model that takes into account the hidden layer nodes of the DBN and then implement a PSO algorithm to improve its structure. The results of the simulations show that the Spark-DBN-PSO algorithm achieves a 99.04% accuracy rate, which is higher than the accuracy of other deep neural network (DNN) and artificial neural network (ANN) algorithms. The results of the research demonstrate that the proposed methodology performs superior than the existing algorithm.Abstract
How to Cite
Downloads
Similar Articles
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Priydarshi Shireesh, Tiwari Atul Kumar, Singh Prashant, Rai Kumud, Mishra Dev Brat, Comparative Water Quality Analysis in Beso River in District Jaunpur, Azamgarh and Ghazipur Uttar Pradesh , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Samara Ahmed, Adil E. Rajput, Denial, acceptance and intervention in society regarding female workplace bullying - A mental health study on social media , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- B. Nivedetha, Water Quality Prediction using AI and ML Algorithms , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.