A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.29Keywords:
Reinforcement Model, IoT, Agriculture Production, Adolescent Identity Search Algorithm, DQNDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In agriculture, irrigation is essential for providing water to crops based on the type of soil they are grown in. To achieve success in farming, it is important to evaluate soil fertility, temperature, rainfall and set irrigation schedules. In this work, to enhance agricultural production, an IoT-based hydration system that utilizes soil moisture and humidity sensors to keep an eye on soil conditions and water crops precisely is developed. This system effectively manages water usage in farming, resulting in an efficient conservation of water resources. The proposed model is categorized into four main phases: (a) Pre-processing; (b) Clustering; (c) Feature extraction; (d) Classification. Initially, the collected raw data is pre-processed via a data-cleaning approach. From the pre-processed data, DB scan is used to cluster the data. From the clustered data, the important feature is extracted by using statistical features like mean, standard deviation, kurtosis, and skewness. Subsequently, from the extracted features, the most optimal features are selected via a new hybrid meta-heuristic optimization model referred to as Cuckoo search-based Levy adolescent identity search algorithm (CLAIS). The projected CLAIS model is the conceptual amalgamation of the standard Cuckoo search optimization (CSO) and adolescent identity search algorithm (AISA), respectively. CLAIS-based deep Q network (CLAIS-DQN) classifier is used to classify the optimal features. DQN is an efficient solution to offload the request optimally which improves the overall performance of the network. The proposed model is implemented using the PYTHON platform. The proposed model has recorded the highest detection accuracy as 96%.Abstract
How to Cite
Downloads
Similar Articles
- Navjot Singh, Sultan Singh, Demographic perception of customers towards dairy marketing practices: An empirical study , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nupur Dogra, Shaveta Sharma, Impact of social networking sites on adolescent alienation and depression with special reference to Facebook usage , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sabana Backer, Prasanth A.P, The influence of attitude on green-cosmetics purchase intention (pi) in central Kerala , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deneshkumar V, Jebitha R, Jithu G, Multistate modeling for estimating clinical outcomes of COVID-19 patients , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 30 31 32 33 34 35 36 37 38 39 > >>
You may also start an advanced similarity search for this article.

