A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.29Keywords:
Reinforcement Model, IoT, Agriculture Production, Adolescent Identity Search Algorithm, DQNDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In agriculture, irrigation is essential for providing water to crops based on the type of soil they are grown in. To achieve success in farming, it is important to evaluate soil fertility, temperature, rainfall and set irrigation schedules. In this work, to enhance agricultural production, an IoT-based hydration system that utilizes soil moisture and humidity sensors to keep an eye on soil conditions and water crops precisely is developed. This system effectively manages water usage in farming, resulting in an efficient conservation of water resources. The proposed model is categorized into four main phases: (a) Pre-processing; (b) Clustering; (c) Feature extraction; (d) Classification. Initially, the collected raw data is pre-processed via a data-cleaning approach. From the pre-processed data, DB scan is used to cluster the data. From the clustered data, the important feature is extracted by using statistical features like mean, standard deviation, kurtosis, and skewness. Subsequently, from the extracted features, the most optimal features are selected via a new hybrid meta-heuristic optimization model referred to as Cuckoo search-based Levy adolescent identity search algorithm (CLAIS). The projected CLAIS model is the conceptual amalgamation of the standard Cuckoo search optimization (CSO) and adolescent identity search algorithm (AISA), respectively. CLAIS-based deep Q network (CLAIS-DQN) classifier is used to classify the optimal features. DQN is an efficient solution to offload the request optimally which improves the overall performance of the network. The proposed model is implemented using the PYTHON platform. The proposed model has recorded the highest detection accuracy as 96%.Abstract
How to Cite
Downloads
Similar Articles
- Pavani Guntaka, M. Changal Raju, Mopuri Obulesu, A numerical study of unsteady MHD free convection flow with heat and mass transfer across an inclined porous plate, taking hall current and dufour effects by FDM , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Anurag Tripathi, Shri Prakash, Prem Narayan Tripathi, Impact of SARS-CoV-2 (COVID-19) on the Nervous System: A Critical Review , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Dinesh Kumar Verma, Ruchi Tripathi, Vijai Krishna Dsa, Rakesh Kumar Pandey, Histopathological Changes in Liver and Kidney of Heteropneustes fossilis (Bloch) on Chlorpyrifos Exposure , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Manikant Tripathi, Sukriti Pathak, Ranjan Singh, Pankaj Singh, Pradeep K. Singh, Nivedita Prasad, Sadanand Maurya, Awadhesh Kumar Shukla, Adsorptive remediation of hexavalent chromium using agro-waste rice husk: Optimization of process parameters and functional groups characterization using FTIR analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Tara K. Sharma, Problems and prospects of tourism financing in Sikkim , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 28 29 30 31 32 33 34 35 36 37 > >>
You may also start an advanced similarity search for this article.

