A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.29Keywords:
Reinforcement Model, IoT, Agriculture Production, Adolescent Identity Search Algorithm, DQNDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In agriculture, irrigation is essential for providing water to crops based on the type of soil they are grown in. To achieve success in farming, it is important to evaluate soil fertility, temperature, rainfall and set irrigation schedules. In this work, to enhance agricultural production, an IoT-based hydration system that utilizes soil moisture and humidity sensors to keep an eye on soil conditions and water crops precisely is developed. This system effectively manages water usage in farming, resulting in an efficient conservation of water resources. The proposed model is categorized into four main phases: (a) Pre-processing; (b) Clustering; (c) Feature extraction; (d) Classification. Initially, the collected raw data is pre-processed via a data-cleaning approach. From the pre-processed data, DB scan is used to cluster the data. From the clustered data, the important feature is extracted by using statistical features like mean, standard deviation, kurtosis, and skewness. Subsequently, from the extracted features, the most optimal features are selected via a new hybrid meta-heuristic optimization model referred to as Cuckoo search-based Levy adolescent identity search algorithm (CLAIS). The projected CLAIS model is the conceptual amalgamation of the standard Cuckoo search optimization (CSO) and adolescent identity search algorithm (AISA), respectively. CLAIS-based deep Q network (CLAIS-DQN) classifier is used to classify the optimal features. DQN is an efficient solution to offload the request optimally which improves the overall performance of the network. The proposed model is implemented using the PYTHON platform. The proposed model has recorded the highest detection accuracy as 96%.Abstract
How to Cite
Downloads
Similar Articles
- Sadanand Maurya, Manikant Tripathi, Karunesh K. Tiwari, Awadhesh K. Shukla, Isolation and molecular characterization of microbial isolates from Saryu river water , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kamna Kandpal, Piyashi Dutta, P.Sasikala Ravichandran, Examining the relationship between motivation and incentives in the context of maternal health awareness: A study of Asha workers in Uttarakhand , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Chaitanya A. Kulkarni, Reema Joshi, Isha Katariya, Tushar Palekar, A scoping review of influence of lifestyle factors on menstrual disorders in menstruating women , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Elangovan G. Reddy, Anjana Devi V, Subedha V, Tirapathi Reddy B, Viswanathan R, A smart irrigation monitoring service using wireless sensor networks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amanda Q. Okronipa, Jones Y. Nyame, Exploring the effect of perceived empathy and social presence on the intention to use AI in higher education , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Vnuchko, O. Batrymenko, О. Ткach, М. Karashchuk, M. Volkivskyi, Models of interaction between business and government in the conditions of the European integration course of Ukraine , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 29 30 31 32 33 34 35 36 37 38 > >>
You may also start an advanced similarity search for this article.

