A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.29Keywords:
Reinforcement Model, IoT, Agriculture Production, Adolescent Identity Search Algorithm, DQNDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In agriculture, irrigation is essential for providing water to crops based on the type of soil they are grown in. To achieve success in farming, it is important to evaluate soil fertility, temperature, rainfall and set irrigation schedules. In this work, to enhance agricultural production, an IoT-based hydration system that utilizes soil moisture and humidity sensors to keep an eye on soil conditions and water crops precisely is developed. This system effectively manages water usage in farming, resulting in an efficient conservation of water resources. The proposed model is categorized into four main phases: (a) Pre-processing; (b) Clustering; (c) Feature extraction; (d) Classification. Initially, the collected raw data is pre-processed via a data-cleaning approach. From the pre-processed data, DB scan is used to cluster the data. From the clustered data, the important feature is extracted by using statistical features like mean, standard deviation, kurtosis, and skewness. Subsequently, from the extracted features, the most optimal features are selected via a new hybrid meta-heuristic optimization model referred to as Cuckoo search-based Levy adolescent identity search algorithm (CLAIS). The projected CLAIS model is the conceptual amalgamation of the standard Cuckoo search optimization (CSO) and adolescent identity search algorithm (AISA), respectively. CLAIS-based deep Q network (CLAIS-DQN) classifier is used to classify the optimal features. DQN is an efficient solution to offload the request optimally which improves the overall performance of the network. The proposed model is implemented using the PYTHON platform. The proposed model has recorded the highest detection accuracy as 96%.Abstract
How to Cite
Downloads
Similar Articles
- P N Tripathi, Ved Prakash Tripathi, Swapnil Raj Dubey, Conservation Needs of Freshwater Fin-Fish Genetic Resources , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Kirti Gupta, Parul Goyal, Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- I. Francina Nishandhi, A Study on an Optimal Four Echelon Inventory Model for Growing Items with Imperfect Quality and Trade Credit Financing , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sanskriti Gandhi, Usha Asnani, Srivalli Natarajan, Chinmay Rao, Richa Agrawal, Evaluation of stability of fixation using conventional miniplate osteosynthesis in comminuted and non-comminuted Le Fort I, II, III fractures – A dynamic finite element analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Maj Neerja Masih, E.S. Charles, Study of Rhodotorula glutinis growth and lipid production using low cost substrates , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Nalini S, Ritha W, Inventory model considering trade discounts and scrap disposal with sustainability , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

