A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.29Keywords:
Reinforcement Model, IoT, Agriculture Production, Adolescent Identity Search Algorithm, DQNDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In agriculture, irrigation is essential for providing water to crops based on the type of soil they are grown in. To achieve success in farming, it is important to evaluate soil fertility, temperature, rainfall and set irrigation schedules. In this work, to enhance agricultural production, an IoT-based hydration system that utilizes soil moisture and humidity sensors to keep an eye on soil conditions and water crops precisely is developed. This system effectively manages water usage in farming, resulting in an efficient conservation of water resources. The proposed model is categorized into four main phases: (a) Pre-processing; (b) Clustering; (c) Feature extraction; (d) Classification. Initially, the collected raw data is pre-processed via a data-cleaning approach. From the pre-processed data, DB scan is used to cluster the data. From the clustered data, the important feature is extracted by using statistical features like mean, standard deviation, kurtosis, and skewness. Subsequently, from the extracted features, the most optimal features are selected via a new hybrid meta-heuristic optimization model referred to as Cuckoo search-based Levy adolescent identity search algorithm (CLAIS). The projected CLAIS model is the conceptual amalgamation of the standard Cuckoo search optimization (CSO) and adolescent identity search algorithm (AISA), respectively. CLAIS-based deep Q network (CLAIS-DQN) classifier is used to classify the optimal features. DQN is an efficient solution to offload the request optimally which improves the overall performance of the network. The proposed model is implemented using the PYTHON platform. The proposed model has recorded the highest detection accuracy as 96%.Abstract
How to Cite
Downloads
Similar Articles
- Vinodini R, Ritha W, Sasitharan Nagapan, An inventory model on the impact of green investment with deteriorating items and planned back orders for economic efficiency and environmental sustainability , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Teklu Hailu, Regasa Begna , Pre-extension demonstration of inter-cropping of improved forages with food and cash crops at Semen Bench Woreda, Southwest Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Abbasova Sona Jamal, Aliyev Sabit Shakir, Mahmudov Elmir Heydar, Museyibli Emin Bakir, Nadirkhanova Dilshat Adalat, Econometric analysis of grain yields (using the example of the Republic of Azerbaijan) , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- N.S.G. Ganesh, V Arulkumar, R. Lathamanju, Priscilla Joy , Energetic and highly reliable photovoltaic power source assisted water pump control system design using IoT , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

