Load aware active low energy adaptive clustering hierarchy for IoT-WSN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.23Keywords:
Active Routing, Adaptive Clustering, LEACH protocol, Load Aware, Low Energy, Internet-of Things (IoT), Wireless Sensor Network (WSN)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Clustering is a primary process that takes place in an IoT based wireless sensor network environment commences from the deployment phase. Due to the heterogeneity and resource constrained nature of internet of things (IoT) networks, dynamic clustering, cluster head selection, and routing are required to optimize the network and to improve the overall network performance. Load aware active low energy adaptive clustering hierarchy (LAALEACH) work is an attempt to introduce novel components to the standard LEACH protocol. The main objective of LAALEACH work is to achieve a load aware active routing in IoT based wireless sensor network environments. Rapid load estimator, load pattern tracker, and load aware active routing are the contributed modules introduced in this LAALEACH work. Most recent related works are analyzed and the proposed modules are devised in a way to overcome the issues in the existing methods. Standard network performance parameters such as throughput, packet delivery rate, communication delays, and energy consumption are measured by the OPNET based simulation during the experiments. Obtained improvements in the overall performance is the accomplishment of LAALEACH work.Abstract
How to Cite
Downloads
Similar Articles
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Anbarasi, K. Anitha, S. Hemalatha, A study on energy sum of dominating sets in East Indian states , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. R. Jasmine Begum, M. Parveen, S. Latha, IoT based home automation with energy management , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

