Load aware active low energy adaptive clustering hierarchy for IoT-WSN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.23Keywords:
Active Routing, Adaptive Clustering, LEACH protocol, Load Aware, Low Energy, Internet-of Things (IoT), Wireless Sensor Network (WSN)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Clustering is a primary process that takes place in an IoT based wireless sensor network environment commences from the deployment phase. Due to the heterogeneity and resource constrained nature of internet of things (IoT) networks, dynamic clustering, cluster head selection, and routing are required to optimize the network and to improve the overall network performance. Load aware active low energy adaptive clustering hierarchy (LAALEACH) work is an attempt to introduce novel components to the standard LEACH protocol. The main objective of LAALEACH work is to achieve a load aware active routing in IoT based wireless sensor network environments. Rapid load estimator, load pattern tracker, and load aware active routing are the contributed modules introduced in this LAALEACH work. Most recent related works are analyzed and the proposed modules are devised in a way to overcome the issues in the existing methods. Standard network performance parameters such as throughput, packet delivery rate, communication delays, and energy consumption are measured by the OPNET based simulation during the experiments. Obtained improvements in the overall performance is the accomplishment of LAALEACH work.Abstract
How to Cite
Downloads
Similar Articles
- Rashmi Rani, ROLE OF NEUROTICISM AND EXTRAVERSION FACTORS OF PERSONALITY ON LIFE SATISFACTION IN MARRIED COUPLES , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Free Energy During Complexation of p-chlorobenzoylthioacetophenone with Some Bivalent Transition Metals , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Mahima Srivastava, Chemical facets of environment-friendly corrosion impediment of low-carbon steel in aqueous solutions of inorganic mineral acid , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

