Batch size impact on enset leaf disease detection
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.07Keywords:
Agriculture, diseases, Computer vision, Machine learning, feature extraction., EnsetDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Enset, also known as the “false banana,” is a staple food in southern and southwestern Ethiopia that could potentially alleviate poverty among smallholders. Recently, a bacterial wilt disease that damages enset leaves has resulted in massive economic losses for farmers. The use of deep learning for automated plant leaf disease diagnosis in crops has grown in popularity in recent years; however, the impact of hyperparameter selection, particularly batch size, on model performance in the context of enset leaf disease detection remains unidentified. In this research, we looked at how batch size affects the effectiveness of a deep learning model to detect enset leaf disease. The study investigated how different batch size settings affected model performance during the detection of enset leaf disease. To confirm this, five commonly used batch sizes [16, 32, 64, 128, and 256] were combined in the proposed experiments. For the study, we have collected a total of 2132 infected and healthy leaves of enset from the south-west area of Ethiopia. Before training the convolutional neural network (CNN) model, the images in the dataset are preprocessed to enhance feature extraction and consistency. Based on the results of the experiments, we determined that the model’s efficiency was even better, but only when the batch size employed in the model was less than the size of the test dataset. The study uses deep learning to detect bacterial wilt in enset leaves and provides academics and practitioners with heuristic information to help boost enset production when CNN is used in agricultureAbstract
How to Cite
Downloads
Similar Articles
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

