Batch size impact on enset leaf disease detection
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.07Keywords:
Agriculture, diseases, Computer vision, Machine learning, feature extraction., EnsetDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Enset, also known as the “false banana,” is a staple food in southern and southwestern Ethiopia that could potentially alleviate poverty among smallholders. Recently, a bacterial wilt disease that damages enset leaves has resulted in massive economic losses for farmers. The use of deep learning for automated plant leaf disease diagnosis in crops has grown in popularity in recent years; however, the impact of hyperparameter selection, particularly batch size, on model performance in the context of enset leaf disease detection remains unidentified. In this research, we looked at how batch size affects the effectiveness of a deep learning model to detect enset leaf disease. The study investigated how different batch size settings affected model performance during the detection of enset leaf disease. To confirm this, five commonly used batch sizes [16, 32, 64, 128, and 256] were combined in the proposed experiments. For the study, we have collected a total of 2132 infected and healthy leaves of enset from the south-west area of Ethiopia. Before training the convolutional neural network (CNN) model, the images in the dataset are preprocessed to enhance feature extraction and consistency. Based on the results of the experiments, we determined that the model’s efficiency was even better, but only when the batch size employed in the model was less than the size of the test dataset. The study uses deep learning to detect bacterial wilt in enset leaves and provides academics and practitioners with heuristic information to help boost enset production when CNN is used in agricultureAbstract
How to Cite
Downloads
Similar Articles
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper