Batch size impact on enset leaf disease detection
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.07Keywords:
Agriculture, diseases, Computer vision, Machine learning, feature extraction., EnsetDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Enset, also known as the “false banana,” is a staple food in southern and southwestern Ethiopia that could potentially alleviate poverty among smallholders. Recently, a bacterial wilt disease that damages enset leaves has resulted in massive economic losses for farmers. The use of deep learning for automated plant leaf disease diagnosis in crops has grown in popularity in recent years; however, the impact of hyperparameter selection, particularly batch size, on model performance in the context of enset leaf disease detection remains unidentified. In this research, we looked at how batch size affects the effectiveness of a deep learning model to detect enset leaf disease. The study investigated how different batch size settings affected model performance during the detection of enset leaf disease. To confirm this, five commonly used batch sizes [16, 32, 64, 128, and 256] were combined in the proposed experiments. For the study, we have collected a total of 2132 infected and healthy leaves of enset from the south-west area of Ethiopia. Before training the convolutional neural network (CNN) model, the images in the dataset are preprocessed to enhance feature extraction and consistency. Based on the results of the experiments, we determined that the model’s efficiency was even better, but only when the batch size employed in the model was less than the size of the test dataset. The study uses deep learning to detect bacterial wilt in enset leaves and provides academics and practitioners with heuristic information to help boost enset production when CNN is used in agricultureAbstract
How to Cite
Downloads
Similar Articles
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rajeshwari D, C. Victoria Priscilla, An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Regasa Begna, Worku Masho, Wondosan Wondimu, Yaregal Tilahun, Tilahun Bekele, Benyam Tadesse, Haile Negash, Participatory evaluation and demonstration of productive performance of Bovans Brown chicken under village production system in Menit Shasha Woreda, West Omo Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

