Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.03Keywords:
Wearable medical devices, Material selection framework, Genetic algorithm, Multiscale modeling, Performance assessment, Computational material scienceDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research presents a novel algorithmic material selection framework for wearable medical devices, utilizing a genetic algorithm-based approach with multiscale modeling. The study employs a comprehensive research methodology encompassing computational modeling, data visualization, and performance assessment. Initially, a diverse set of materials is defined, and their performance scores are assigned to establish a baseline for evaluation. The ensuing data visualization includes a bar chart, a scatter plot, and a line chart, providing insights into material performance, cost-performance relationships, and the convergence of the genetic algorithm, respectively. Performance metrics such as accuracy, precision, and recall are calculated to gauge the algorithm’s efficacy, presented in a bar chart for a nuanced evaluation. Furthermore, a receiver operating characteristic (ROC) curve and a confusion matrix are employed for discriminative ability assessment and detailed classification performance analysis. The results showcase the algorithm’s proficiency in material selection, emphasizing the importance of accuracy, precision, and recall in the complex landscape of wearable medical device development. The abstract concludes with a summary of the implications drawn from each visualization, highlighting the potential of the proposed algorithmic framework to enhance the precision and efficiency of material selection processes for wearable medical devices. This research contributes to the advancement of materials science in healthcare applications, presenting a holistic approach that integrates computational techniques and data-driven methodologies for optimized material selectionAbstract
How to Cite
Downloads
Similar Articles
- R. Rita Jenifer, V. Sinthu Janita, Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Z. Admasu, E. Bayou, Current population size and risk status of the indigenous endangered Sheko cattle breed in south-west Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Neeraj ., Anita Singhrova, Quantum Key Distribution-based Techniques in IoT , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper