Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.03Keywords:
Wearable medical devices, Material selection framework, Genetic algorithm, Multiscale modeling, Performance assessment, Computational material scienceDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research presents a novel algorithmic material selection framework for wearable medical devices, utilizing a genetic algorithm-based approach with multiscale modeling. The study employs a comprehensive research methodology encompassing computational modeling, data visualization, and performance assessment. Initially, a diverse set of materials is defined, and their performance scores are assigned to establish a baseline for evaluation. The ensuing data visualization includes a bar chart, a scatter plot, and a line chart, providing insights into material performance, cost-performance relationships, and the convergence of the genetic algorithm, respectively. Performance metrics such as accuracy, precision, and recall are calculated to gauge the algorithm’s efficacy, presented in a bar chart for a nuanced evaluation. Furthermore, a receiver operating characteristic (ROC) curve and a confusion matrix are employed for discriminative ability assessment and detailed classification performance analysis. The results showcase the algorithm’s proficiency in material selection, emphasizing the importance of accuracy, precision, and recall in the complex landscape of wearable medical device development. The abstract concludes with a summary of the implications drawn from each visualization, highlighting the potential of the proposed algorithmic framework to enhance the precision and efficiency of material selection processes for wearable medical devices. This research contributes to the advancement of materials science in healthcare applications, presenting a holistic approach that integrates computational techniques and data-driven methodologies for optimized material selectionAbstract
How to Cite
Downloads
Similar Articles
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vikas Chaudhary, Parul Jhajharia, Mediation of competitive advantage between strategy management practices and organizational performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Enhanced AOMDV-based multipath routing approach for mobile ad-hoc network using ETX and ant colony optimization , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing cloud data security: User-centric approaches and advanced mechanisms , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Energy efficient techniques for iot application on resource aware fog computing paradigm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper