Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.52Keywords:
Denial of service, Denial of sleep, Internet of Things, Wake-up radio, Network security, Wireless sensor networks, AODV protocol.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Internet of Things (IoT) amalgamates a large number of physical objects that are distinctively identified, ubiquitously interconnected and accessible through the Internet. IoT endeavors to renovate any object in the real world into a computing device that has sensing, communicating, computing and control capabilities. There are a budding number of IoT devices and applications and this escort to an increase in the number and complexity of malicious attacks. It is important to defend IoT systems against malicious attacks, especially to prevent attackers from acquiring control over the devices. Energy utilization is significant for battery-enabled devices in the IoT and wireless sensor networks which are operated long time period. The Denial-of-Sleep attack is an explicit type of denial-of-service attack that beleaguered a battery-powered device’s power supply that results in the exhaustion of this critical resource. This paper focuses on the survey on Denial of sleep attacks in Wireless Sensor networks and the IoT.Abstract
How to Cite
Downloads
Similar Articles
- K. Arunkumar, K. R. Shanthy, S. Lakshmisridevi, K. Thilagam, FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deena Merit C K , Haridass M, Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Annalakshmi D., C. Jayanthi, An asymmetric key encryption and decryption model incorporating optimization techniques for enhanced security and efficiency , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing cloud data security: User-centric approaches and advanced mechanisms , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Enhanced AOMDV-based multipath routing approach for mobile ad-hoc network using ETX and ant colony optimization , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Ramesh Babu Durai C, D. Madhivadhani, A. Sumathi, Lily Saron Grace, Graph neural networks for modeling ecological networks and food webs , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

