An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.36Keywords:
Communication, Cognitive Sensor Network, Cognitive Spectrum, Spectrum Sharing, Wireless Network FrameworkDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The possible application of wireless sensor networks is hampered and the widespread use of this novel method is slowed, according to recent surveys conducted within the field of automation in industry, which identified that accuracy pertains indicate currently among the primary obstacles to the dissemination of wireless networking for recognizing and regulating applications. In order to overcome these constraints, it is necessary to raise public understanding of the reasons for dependability issues and the potential approaches to resolving them. Low-power communications of sensor nodes are, in reality, quite susceptible to adverse channel conditions and can readily be affected by transmissions of other co-located devices, making them seem unreliable. In this dissertation, I explore several strategies that may be used to either eliminate interference altogether or reduce its negative consequences. In this paper, we study the creation and modeling of a brand-new spectrum allocation mechanism for wireless sensor networks. Cognitive radio technology can detect spectrum holes in the environment, learn from its surroundings using artificial intelligence, adjust the system’s operating parameters in real-time, and use the secondary spectrum to increase efficiency. In this study, we present a reinforcement learning-based strategy for choosing the power of transmission and frequency that can help individual sensors learn from their prior decisions and those of their peers. Our suggested approach is multiple agents decentralized and adaptable to both the data needs from source to sink and the amount of energy that sensing devices in the network have left over. In comparison to different resource allocation algorithms, the results reveal a dramatic increase in the lifespan of the network.Abstract
How to Cite
Downloads
Similar Articles
- U. Perachiselvi, R. Balasubramani, Funding agencies in Tamil Nadu State Universities: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Deepika M, Antonitte Vinoline I, An integrated inventory system for profit maximization considering partial demand satisfaction , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Priyanka Dutta, Rianka Sarkar, A Sustainable Approach: Navigating through the Mishing Tribe’s Indigenous Knowledge and Disaster Management Strategies , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Gulshan Makkad, Lalsingh Khalsa, Vinod Varghese, Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Parismita Bhagawati, Paramita Dey, Animal cruelty legislation in India: A green criminological exploration , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vimala S, G. Arockia Sahaya Sheela, Label-Aware Imputation with Cluster Refinement for Smartphone Usage Analytics in Educational Institutions , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
<< < 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.

