An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.36Keywords:
Communication, Cognitive Sensor Network, Cognitive Spectrum, Spectrum Sharing, Wireless Network FrameworkDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The possible application of wireless sensor networks is hampered and the widespread use of this novel method is slowed, according to recent surveys conducted within the field of automation in industry, which identified that accuracy pertains indicate currently among the primary obstacles to the dissemination of wireless networking for recognizing and regulating applications. In order to overcome these constraints, it is necessary to raise public understanding of the reasons for dependability issues and the potential approaches to resolving them. Low-power communications of sensor nodes are, in reality, quite susceptible to adverse channel conditions and can readily be affected by transmissions of other co-located devices, making them seem unreliable. In this dissertation, I explore several strategies that may be used to either eliminate interference altogether or reduce its negative consequences. In this paper, we study the creation and modeling of a brand-new spectrum allocation mechanism for wireless sensor networks. Cognitive radio technology can detect spectrum holes in the environment, learn from its surroundings using artificial intelligence, adjust the system’s operating parameters in real-time, and use the secondary spectrum to increase efficiency. In this study, we present a reinforcement learning-based strategy for choosing the power of transmission and frequency that can help individual sensors learn from their prior decisions and those of their peers. Our suggested approach is multiple agents decentralized and adaptable to both the data needs from source to sink and the amount of energy that sensing devices in the network have left over. In comparison to different resource allocation algorithms, the results reveal a dramatic increase in the lifespan of the network.Abstract
How to Cite
Downloads
Similar Articles
- Gaganpreet Kaur Ahluwalia, Jairaj Janakraj Sasane, Ganesh Pathak, Neuromarketing in marketing 6.0: Exploring the intersection of consumer psychology and advanced technologies , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Priya Rajwade, Alka Bansal, A study of the perceptions of teachers towards a holistic approach in teaching in CBSE board schools in the context of NEP 2020 at the foundational and preparatory stages , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Saroj Bala, Rajiv Ranjan Dwivedi, The Problematics of Parenthood in the Shiva Trilogy by Amish , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Nida Syeda, Kishore Selva Babu, Exploring the role of digital humanities in the centralization of knowledge production: Clusters, networks, or echo chambers , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vinodini R, Ritha W, Sasitharan Nagapan, An inventory model on the impact of green investment with deteriorating items and planned back orders for economic efficiency and environmental sustainability , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Theophilus Deenadayal, Tarun Jain, Floristic composition in Paramananda Devara Gudda A sacred grove at Lingadahalli Village Devadurga Taluk Raichur District Karnataka, India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Augustine Antony L, Mary Priya Dharsini A, Some fixed point theorems for contraction on b-multiplicative metric spaces , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, Sustainable Inventory Model for Temperature-Dependent Deteriorating Products under Condition Monitoring , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Ruchi Sharma, Anju Panwar, Yougesh Kumar, Further Observations on Contracaecum aori, Khan and Yaseen (1969) Recovered from the intestine of Channa punctatus in India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.

