Exploring AI-driven approaches to drug discovery and development
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.48Keywords:
AI-driven drug discovery, Pharmaceutical research, Target identification, Personalized medicine, Ethical considerations, Regulatory frameworks.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of artificial intelligence (AI) into drug discovery and development has ushered in a transformative era in pharmaceutical research. The research explores the profound impact of AI-driven approaches in drug discovery and development, demonstrating, that computational intelligence and biomedicine synergize to enhance innovation, efficiency, and precision in pharmaceutical science. AI’s influence spans multiple phases of drug development, from target identification and validation to the optimization of drug candidates, while also facilitating personalized medicine and expediting drug repurposing. Recent studies underscore the precision and swiftness that AI brings to the discovery of drug candidates and the prediction of molecular properties, illustrating the potential advantages of AI in pharmaceutical research. However, AI’s application in healthcare demands cautious consideration, as concerns such as model interpretability, ethical data usage, and regulatory frameworks loom large. The research also the critical need for ethical and secure data utilization. It investigates the methodology employed to create data visualizations that offer comprehensive insights into the advantages and disadvantages of AI algorithms in drug discovery. The analysis emphasizes that a judicious and context-specific approach to AI algorithm selection is essential to harness the transformative power of AI while mitigating its limitations.Abstract
How to Cite
Downloads
Similar Articles
- M. Balamurugan, A. Bharathiraja, An enhanced hybrid GCNN-MHA-GRU approach for symptom-to-medicine recommendation by utilizing textual analysis of customer reviews , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Partha Majumdar, Empowering skill development through generative AI bridging gaps for a sustainable future , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Manan Pathak, Dishang Trivedi Trivedi, Field-effect limits and design parameters for hybrid HVDC – HVAC transmission line corridors , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Usmanova S. Bultakovna, Legal regulation of tourism services in the framework of the general agreement on trade in services , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Arsha A, Jeena Pearl A, Qualitative Phytochemical Profiling of Amaranthus Dubius Leaves , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Binay Kumar Mahto, Rakesh Patel, Rajendra Bapna, Ajay Kumar Shukla, Development and Standardization of a Poly Herbal Formulation , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. S. Deepika, Ajay Massand, Influence of Social Media Marketing on Purchase Intention of Gen Z , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nisha Rathore, Purnendu B. Acharjee, K. Thivyabrabha, Umadevi P, Anup Ingle, Davinder kumar, Researching brain-computer interfaces for enhancing communication and control in neurological disorders , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper

