A smart irrigation monitoring service using wireless sensor networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.44Keywords:
Smart irrigation, Soil moisture, Crop yields, IoT, Zigbee protocol.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The present research uses wireless sensor networks (WSN) to create a smart watering system. The system’s ability to perform real-time monitoring and management of irrigation makes sure that crops get the right quantity of water depending on their unique needs. The suggested method boosts agricultural yields, decreases labor costs, and improves water usage efficiency. The system uses a field-deployed network of inexpensive wireless sensors to track the soil moisture levels in real time. The central controller utilizes the wirelessly sent sensor data to decide when and how much water should be applied to the crops. Utilizing wireless protocols like Zigbee, these nodes connect to a central gateway, where the data is processed and examined to establish the ideal watering needs for each crop. The technology is scalable and simple to install in larger agricultural fields. The study’s findings indicate that the system can boost crop yields by up to 30% while boosting water usage efficiency by up to 60%. Farmers may decrease their water use, save time and money, and enhance their profitability by adopting the smart irrigation monitoring service powered by WSN.Abstract
How to Cite
Downloads
Similar Articles
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Energy efficient techniques for iot application on resource aware fog computing paradigm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Prince Williams, Nilesh M. Patil, Allanki S. Rao, Chandra M. V. S. Akana, K. Soujanya, Aakansha M. Steele, Transformative effects of connectivity technologies on urban infrastructure and services in smart cities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- U. S. P. Sinha, S. Das, J. Prasad, N. G. Ojha, B. C. Prasad, EFFECT OF SECONDARY NUTRIENTS ON THE QUANTITY AND QUALITY OF LEAVES OF TERMINALIA ARJUNA BEDD , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Damtew Girma, Addisalem Mebratu, Fresew Belete, Response of potato (Solanum tuberosum L.) varieties to blended NPSB fertilizer rates on tuber yield and quality parameters in Gummer district, Southern Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rajesh Kumar Sharma, Amrendra Jha, ECOLOGICAL SCREENING OF SHATIYA WETLAND IN RELATION TO AGRICULTURAL PRODUCTIVITY , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- S Prabhakaran, Yugeshkrishnan M, Santhiya M, Danush Kumar S M, Smart Dustbin using IOT , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sirajum Munira Priety, Farhan Bin Manjur, AI Driven Approach in Smart Manufacturing in Bangladesh , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

