A smart irrigation monitoring service using wireless sensor networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.44Keywords:
Smart irrigation, Soil moisture, Crop yields, IoT, Zigbee protocol.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The present research uses wireless sensor networks (WSN) to create a smart watering system. The system’s ability to perform real-time monitoring and management of irrigation makes sure that crops get the right quantity of water depending on their unique needs. The suggested method boosts agricultural yields, decreases labor costs, and improves water usage efficiency. The system uses a field-deployed network of inexpensive wireless sensors to track the soil moisture levels in real time. The central controller utilizes the wirelessly sent sensor data to decide when and how much water should be applied to the crops. Utilizing wireless protocols like Zigbee, these nodes connect to a central gateway, where the data is processed and examined to establish the ideal watering needs for each crop. The technology is scalable and simple to install in larger agricultural fields. The study’s findings indicate that the system can boost crop yields by up to 30% while boosting water usage efficiency by up to 60%. Farmers may decrease their water use, save time and money, and enhance their profitability by adopting the smart irrigation monitoring service powered by WSN.Abstract
How to Cite
Downloads
Similar Articles
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Dushyant Dave, Naresh Vyas, Impact of Textile Effluents on Soil in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Ragul, A. Aloysius, V. Arul Kumar, Enhancing IoT blockchain scalability through the eepos consensus algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Heena Gulia, Sunder Singh Arya, Neha Yadav, Ajay Kumar, Monika Janaagal, Mamta Sawariya, Naveen Kumar, Himanshu Mehra, Sunil Yadav, Sudershan Singh, Reetu Verma, Strategies for adaptations and mitigation of abiotic stresses in crops: A review , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- S. Aasha, R. Sugumar, Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Getasew Mesfin, Isreal Zewide, Abdeta Jembere, Physicochemical Characterization of Vermicompost and its Effect on Acidic Soils in Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Neeraj ., Anita Singhrova, Quantum Key Distribution-based Techniques in IoT , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

