Fault tolerance systems in open source cloud computing environments–A systematic review
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.59Keywords:
Fault tolerant, Load balance, Cloud computing, Failures, Virtual environment.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Considering that there are several distinct cloud computing environments and several suggested approaches for the treatment of fault tolerance for such environments, the objective of the study presented here is a systematization of fault tolerance proposals that results in a survey and the generation of a guided consultation environment for reading the relevant techniques for each case. With the systematization of proposed solutions, it is intended to obtain a document that administrators of cloud computing systems can use. This work points out which techniques apply to which problems, including the advantages and disadvantages of each technique, and facilitates the support process for these administrators in handling the failures. Finally, with the information obtained, a website will be generated to store some of this information. This virtual environment is a prototype of a recommendation environment for cloud fault tolerance. At first, the recommendation will occur through guided search so that administrators of cloud computing systems can have better conditions to handle failures in their environmentsAbstract
How to Cite
Downloads
Similar Articles
- N. Suresh Kumar, S.N.Md. Assarudeen, Solving neutrosophic multi-objective linear fractional programming problem using central measures , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nalini. S, Ritha. W, Sasitharan Nagapan, Optimal Inventory Policies for Perishable Products Under Demand and Lead Time Uncertainty , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Naresh Vyas, Dushyant Dave, Impact of Textile Effluents on Water in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vikas Yadav, Parul Nangia, Bisphenol-A Induced Changes in Blood Indices of Channa punctatus and Alleviation with Vitamin C , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Komal Raichura, Asha L. Bavarava, Redefining Classroom Dynamics: AI Tools and the Future of English Language Pedagogy , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

