
Abstract
Considering that there are several distinct cloud computing environments and several suggested approaches for the treatment of
fault tolerance for such environments, the objective of the study presented here is a systematization of fault tolerance proposals that
results in a survey and the generation of a guided consultation environment for reading the relevant techniques for each case. With the
systematization of proposed solutions, it is intended to obtain a document that administrators of cloud computing systems can use.
This work points out which techniques apply to which problems, including the advantages and disadvantages of each technique, and
facilitates the support process for these administrators in handling the failures. Finally, with the information obtained, a website will be
generated to store some of this information. This virtual environment is a prototype of a recommendation environment for cloud fault
tolerance. At first, the recommendation will occur through guided search so that administrators of cloud computing systems can have
better conditions to handle failures in their environments.
Keywords: Fault tolerant, Load balance, Cloud computing, Failures, Virtual environment.

Fault tolerance systems in open source cloud computing
environments–A systematic review
K. Vani1 and S. Sujatha2

REVIEW ARTICLE

© The Scientific Temper. 2023
Received: 11/07/2023 Accepted: 18/08/2023 Published : 25/09/2023

1Department of computer science, Emerald Heights College For
Women, Finger Post, Ooty, Tamil Nadu, India.
2Department of computer science, Dr.G.R. Damodaran College of
Science, Coimbatore, Tamil Nadu, India.
*Corresponding Author: K. Vani, Department of computer
science, Emerald Heights College For Women, Finger Post, Ooty,
Tamil Nadu, India, E-Mail: vanicloudresearcher@gmail.com.
How to cite this article: Vani, K., Sujatha, S. (2023). Fault tolerance
systems in open source cloud computing environments–A
systematic revie. The Scientific Temper, 14(3): 944-949
Doi: 10.58414/SCIENTIFICTEMPER.2023.14.3.59
Source of support: Nil

Conflict of interest: None.

Introduction
For cloud computing, seen as a business, the provider
must fulfill the service level agreement (SLA) established
with its customers. Please comply with this contract to
ensure the quality of the hosted service is maintained
and, consequently, customer satisfaction. The failures can
generate numerous losses, both for the customer and for
the provider of cloud computing services. Therefore, it is
important that the provided service can occur without
interruptions or performance losses. That is, it is important
that the system is fault tolerant. The quest to maintain
a fault-tolerant environment must be constant since

The Scientific Temper (2023) Vol. 14 (3): 944-949 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2023.14.3.59 https://scientifictemper.com/

numerous failures can be resolved in many ways. This has
been worked on in different ways, with proposals that
often do not bring a real gain in relation to other existing
methods, which is an error. Unfortunately, this error has been
repeated repeatedly, which has generated a huge amount
of approaches for handling failures, causing difficulties in
identifying which techniques should be used. This work
presents a guided search website developed based on
information extracted from a systematic literature review.
With the review, a survey was created regarding fault
tolerance in cloud computing, containing solutions to
handle failures in different environments and situations. The
synthesized form of this survey allowed the creation of the
search website (Mell & Grance, 2011). The work presented
here evaluates these contributions based on a proposal for
a methodology for classifying fault tolerance techniques,
which allows the identification of the most appropriate
technique for the specific case of an administrator of cloud
computing systems.

Systems analysis for fault tolerance in cloud com-
puting environments
This section presents the tools and systems from the articles
selected for evaluation with the review described. The tools
were subdivided according to the type of failure, which could
be data, process, communication, or virtualization failures.
Each item will be subdivided according to the technique
used for handling failures: checkpointing, replication, work

945 Fault Tolerance Systems in Cloud– A Systematic Review

migration, repeat, self-healing and preemptive migration,
for example. After these sections, a section was added to
describe the website prototype that will serve as a place to
carry out guided searches for the solution to a given problem.

In order to more clearly present the solutions identified
after the systematic review work, a classification approach
was adopted in this section, initially based on the type
of failure treated. Thus, the analysis is separated into the
following (Javadi et al., 2012):
• Systems handling data-related failures;
• Systems handling communication-related failures;
• Systems handling process related failures; and
• Systems handling virtualization related failures.

data-related failures
In this section, proposals to tolerate data-related failures
are described. The study addresses these failures by
checkpointing, self-healing, preemptive migration, retry,
handling user-defined exceptions, workflow rescue, job
migration, or replication. Some of these proposals will be
presented in detail in later sections, only named here.

Use of Checkpointing
Checkpointing is ideal for situations with a large volume
of data since, in its most straightforward approach, it
guarantees the recovery of the environment from the
most recent checkpoint. In this category, there is the IGG
approach, presented below.

InterGrid Gateway (IGG)
In (Javadi et al., 2012), failure handling is done using
checkpointing, which restarts the request for a new
VM from the last moment of availability. The filling
scheduling algorithms were modified to support the perfect
checkpointing mechanism and provide a fault-tolerant
environment to serve private cloud requests. Table 1
summarizes the main characteristics of the system.

Preemptive Migration
Preemptive migration makes it possible to migrate data
with low computational costs. In this category, there is the
HySARC2 approach (Vasile et al., 2015), presented below.

HySARC2
The purpose of HySARC2 is to improve scheduling in a
given cloud environment through service grouping and

labeling systems, ensuring the proper use of resources
and consequently satisfying user requirements and service
provider interests. New scheduling approaches must
monitor the system’s structure and adjust the schedule
according to real-time usage. This also aids in a more
fault-tolerant system, as certain changes are not always
expected. Table 1 summarizes the main characteristics of
the system.

Job migration
If, for some reason, a certain task cannot be entirely
executed, the task is migrated to a new machine. Therefore,
the environment must have adequate machines and/or VMs.
The SkyCDS approach is presented below in this category
(Gonzalez et al., 2015).

SkyCDS (Prototype)
It is a system focused on content delivery service (CDS)
based on overlay publication/subscription in cloud storage.
Delivery is split into metadata stream and content store
tiers. The system is able to reduce the overhead of content
dispersion and process retrieval.

Use of Self-Healing
The self-healing technique makes it possible to recover
the environment with little or no human intervention. In
this category, there are the DARGOS approaches (Javier et
al., 2013) and a prototype for the automatic treatment of
anomalies (Gulenko et al., 2016), presented below.

Distributed Architecture for Resource management and mon-
itoring in clouds (DARGOS)
The system was designed to satisfy the main requirements
of a cloud environment while having low latency and
overhead. Based on the publication/subscription paradigm,
the environment allows choosing zones and other
communication resources to be monitored, with update
rates and a set of sensors (Table 1).

Prototype for automatic treatment of anomalies
Through supervised and unsupervised artificial intelligence,
the proposal aims to create a system for automatic and
real-time masking of failures, being the focus of Network
Function Virtualization (NFV) environments. Table 2
summarizes the main characteristics of the system.

Table 1: Summary of the IGG, HySARC2, SkyCDS, and DRAGOS systems.
System/
characteristics Techniques used Compatible cloud

manager Programming model Solved problem Type of fault handled

IGG Checkpointing OpenNebula and
Eucalyptus Java QoS; Resource Provisioning Data

HySARC2 Preemptive migration OpenStack Not informed by the authors Resource provisioning Processes and data

SkyCDS Work migration OpenStack Not informed by the authors A new way to compare
storage options

Delivery of the risk
assessment

DRAGOS Self-healing and
preemptive migration OpenStack C, JavaScript, and Python Data Data

946 K. Vani et al. The Scientific Temper. Vol. 14, No. 3

Use of Replication
Replication is a simple technique to be implemented and
used, which can be applied in different cases within the
context of recovery from data-related failures. For example,
one (or n) identical copy(s) of the database can be made, thus
ensuring an environment with high availability, even if in a
highly costly manner. In this category there is the SprintNet
approach (Wang et al., 2015), presented below, in addition to
proposals such as FIR3 (Vijayakumar et al., 2015), DCR2S (Gill
& Singh, 2016) Morpho (Lu et al., 2015), Tahoe-LAFS (Selimi
et al., 2019), Hybrid algorithm based on MapReduce (Zhang
et al., 2019), GFS (Nakanishi et al., 2014), Private multilayer
storage system (Gonzalez et al., 2013) and SwiftER (Datta et
al., 2016), which are presented below.

Tahoe-LAFS
It is an open-source system for cloud computing focused
on fault tolerance in storage nodes. Offers access through
multiple interfaces (Web, OS, SSH), ensuring privacy and
security by encrypting data on the client side. In experiments
done under different conditions, the application was able
to recover all different file sizes, even in a community
network (Selimi et al., 2019). The replication system is based
on erasure code, in which every new file is separated into
n different shares, and can be recovered from any share.
Table 3 summarizes the main characteristics of the system.

swifter
The proposal was initially given by (Datta et al., 2016) and
aimed to reduce the data stored with replication. By using
the Erasure technique, the system was named SwifER (Swift
Erasure). The data duplicated by the system is stored as a
Raid, which can reduce the storage space by 1.2x to 3x,
maintaining reliability and high availability. Its operation
occurs in OpenStack’s Swift layer (Table 3).

Multi-tier private storage system
The system proposed by (Gonzalez et al., 2013) is a different
storage service enabling the transfer of redundant
information between levels. File availability is guaranteed
through the unified system that allows recovery from
different categories of service failures. Table 3 summarizes
the main characteristics of the system.

Gluster File System (GFS)
The system was designed based on high-performance
computing concepts. At the same time, it has a simplified
structure similar to that of RAID10. According to (Nakanishi
et al., 2014), in tests compared to Swift, GFS showed data
I/O up to 4.5x faster.

Replication is done on a file basis, where a distributed
hash is used to statically allocate elementary spaces called
“bricks” for the entire space of stored file names. Table 3
summarizes the main characteristics of the system.

Hybrid algorithm based on MapReduce
In this system, the algorithm is based on MapReduce using
top down specialization (TDS) and bottom-up generalization
(BUG). The proposed algorithm is able to normalize subtrees.
According to the tests carried out by the authors (Zhang et
al., 2019), the environment significantly improves efficiency
and scalability compared to existing approaches. Table 4
summarizes the main characteristics of the system.

Morpho
The proposal is basically a modification of the Hadoop and
MapReduce framework. Morpho was designed to improve
the cooperativity of the compute and storage layers. That is,
MapReduce tasks can fetch information about the physical
machines’ network topology and the VMs’ allocations.
The system also uses complementary strategies for

Table 2: Summary Prototype for automatic treatment of anomalies

Techniques used Replication, Self-healing, and preemptive migration
Compatible Cloud Manager OpenStack

Programming Model Python

Solved problem Solution involving intelligence for NFV mainly

Type of Fault Handled Communication; Process; Data; Virtualization

Advantage Automatic fault-masking, avoiding interruptions in the system

Disadvantage It is a prototype

Table 3: Summary of the Tahoe-LAFS, SwiftER, SwiftER, Multitier storage, and GFS systems.
System/
characteristics

Techniques
used

Compatible
cloud manager

Programming
model Solved problem Type of fault handled

Tahoe-LAFS Replication Universal python Data recovery (availability) Data

SwiftER Replication OpenStack Python Improved storage space; more efficient than
“traditional” replication Data and communication

Multitier Storage Replication OpenStack Java Data and Communication File recovery in different layers

GFS Replication OpenStack C/C++ Low CPU usage (less than 20%); faster I/O Data

947 Fault Tolerance Systems in Cloud– A Systematic Review

allocating data from the VMs, generating better mapping
and reducing the input location. Table 4 summarizes the
main characteristics of the system.

Dynamic Cost-Aware Re-Replication and Re-balancing Strat-
egy (DCR2S)
The system is compatible with heterogeneous clouds and
uses an optimized dynamic replication strategy, identifying
the minimum number of replicas necessary to guarantee
the desired availability. Table 4 summarizes the main
characteristics of the system.

Fuzzy Inference based Reliable Replica Replacement (FIR3)
Data loss or service interruptions can occur frequently in
internet-based computing, to solve this problem the authors
(Vijayakumar et al., 2015) created a new data replication
technique based on the Fuzzy Inference System.

The main idea is to keep each data replica in the different
Availability Zones. The algorithm uses fuzzy inference helps
in solving space inconsistency problems. Replication is
deployed in the cloud stack environment, so this replication
technique will improve the entire fault tolerance of the
system. Table 4 summarizes the main characteristics of the
system.

Medical Image File Accessing System (MIFAS)
The proposed system is based on the Hadoop Distributed
File System (HDFS). It brings improvements in medical image
storage, stability during transmissions, and reliability, in
addition to providing an easy-to-manage interface.
The Replication Location Service automatically duplicates

from one cloud to another (even if distinct) when
medical images are uploaded to MIFAS. The results of the
experiments prove that the system has high reliability and
fault tolerance (Sujatha et al., 2010). Table 5 summarizes the
main characteristics of the system.

System based on the 80/20 principle
Literature (Vijayakumar et al., 2015) tested a system based
on the 80/20 rule (80% of cluster failures come from 20% of
physical machines).

The idea is to help identify physical machines prone
to failures in clusters. Machines are subdivided into two
subsets: reliable (70% to 80% of machines) and risky (20% to
30% of machines). The trusted subgroup includes a highly
trusted zone, providing high availability for latent jobs. Table
5 summarizes the main characteristics of the system.

Cloud middleware to ensure real-time performance and high
availability of soft applications
The software proposed by (Zhang et al., 2019) presents
a framework capable of implementing virtual machine
replicas according to users’ predefined flexible algorithms.
The system includes a Local Fault Manager (LFM) for each
host and a Global Replicated Fault Manager (GFM) to
manage clusters of physical machines (Table 5).

Mosaic
To address various cloud usage scenarios and provide
additional solutions for portability, (Zhang et al., 2019)
designed the mOSAIC, whose main characteristics
are seen in Table 5. The premises to be fulfilled by the

Table 5: Summary of the MIFAS, 80/20 principle, cloud middleware, and MOSAIC systems
System/
characteristics Techniques used Compatible cloud

manager Prog. model Solved problem Type of fault
handled

MIFAS Replication and self-
healing OpenNebula Not informed by the

authors Data transfer (images) Data

80/20
principle

Replication, job
migration, and job
resubmission

OpenStack Java
Failure prevention; improving
reliability and availability in large-
scale distributed systems

Data

Cloud
Middleware

Replication,
checkpointing, handling
user-defined exceptions

OpenStack and
OpenNebula C++ Resource optimization; real-time

resource sharing usage information

Data;
virtualization;
law Suit

MOSAIC Workflow replication
and Rescue

OpenNebula and
OpenStack Java

Best value for money, multi-cloud
deployment, authentication
(prevention)

Communication,
process and data

Table 4:Summary of the Hybrid algorithm based on MapReduce, Morpho, DCR2S, and FIR3 systems
System/ characteristics Techniques used Compatible cloud

manager Prog. model Solved problem Type of fault
handled

Hybrid algorithm
based on MapReduce Replication OpenStack Not informed

by the authors Normalization of subtrees Data

Morpho Replication OpenNebula Java Improved resource allocation and data
storage

Data and
virtualization

DCR2S Replication Universal Not informed
by the authors Data recovery (availability) Data

FIR3 Replication Cloud stack Java
File replacement is effectively handled using
the Fuzzy Inference System and effective
consistency between replicas.

Data

948 K. Vani et al. The Scientific Temper. Vol. 14, No. 3

mOSAIC are application, programming, monitoring, and
implementation.

Pilot Data
Pilot-Data addresses fundamental data and computing
co-placement and scheduling challenges in heterogeneous
and distributed environments with interoperability and
extensibility as first-order concerns. It also relies on the
reliability features built into the transfer service that
automatically restart failed transfers. Table 6 summarizes
the main characteristics of the system.

Failures–related to Communication
In this section, proposals to tolerate failures related to
communication will be described. The proposals listed
here address these failures by checkpointing, self-healing,
preemptive migration, retry, handling user-defined
exceptions, workflow rescue, job migration, or replication.
Some of these proposals were presented in previous
sections or will be presented later and only be named here.

Use of Checkpointing
With checkpointing, it is possible to deal with problems
related to data traffic so that there is no need to restart data
transfer processes completely, for example. In this category,
the following approaches can be highlighted: A system for
redeeming unexpected spots using heterogeneous spot
instances and overprovisioning (Zhang et al., 2019), and
SymVirt, presented in Table 6.

ONHelp
The system presented by (Sambath et al., 2019) assists
OpenNebula with issues such as security, VM monitoring,
fault tolerance, and secure storage.
Regarding fault tolerance, the service deals with software

and VM-related failures handled using three mechanisms:
lightweight VM checkpoint, VM hot backup, and virtual
cluster collaborative backup. Table 6 summarizes the main
characteristics of the system.

System for rescuing unexpected spots using spot instances
heterogeneous and overprovisioning
The system reliably auto-scales web applications using
heterogeneous peer instances and on-demand instances.

The system tolerates failures using rescues from
unexpected locations that use heterogeneous point
instances and over-provisioning. Summarizes the main
characteristics of the system (Table 6).

Symbiotic Virtualization (SymVirt)
SymVirt allows a VM to cooperate with a message transfer
layer in the guest operating system. It works as a mediator
that enables hot migration using the fault tolerance
mechanisms SymCR and SymPFT, which may or may not
work together as needed.

Use of Preemptive Migration
Thanks to preemptive migration, it is possible to carry out the
anticipatory migration of a task, which allows the possibility of
failure prevention treatment. In this category, the Prototype
approach for automatic treatment of anomalies, presented
in the previous section, and the mantis, fault-tolerant stateful
firewall, Advanced Access Control System, Prototype for
Systematic Network State Extraction, and pFTree-Ext and
pFTree-Wt, presented below.

mantis
Despite the system being compatible with several clouds,
the authors (Premalatha & Sujatha, 2021) tested only on
OpenStack (Table 7).

Table 6: Summary of the Pilot Data, ONHelp, system for rescuing unexpected spots, and symVirt systems.
System/
characteristics Techniques used Compatible

cloud manager Prog. model Solved problem Type of fault
handled

Pilot-Data Replication and repeat Eucalyptus and
OpenStack

Not informed
by the authors Resource allocation Data

ONHelp
Checkpointing, job migration,
user-defined exception
handling, preemptive migration

OpenNebula Not informed
by the authors

Deals with various failures in
general

Process,
communication,
and virtualization

System for rescuing
unexpected spots

Checkpointing, job migration,
workflow replication, and rescue Amazon EC2 Java

Reducing the financial cost of
cloud resources and ensuring
high availability

Communication,
process

SymVirt Replication, checkpoint, and
Retry Universal fortran

Migration and communication
between VMM and guest OS
communication and virtualization

Allows VM hot
migration; easy
implementation; API

Table 7: Summary of the mantis, FT-FW, systems.
System/
characteristics Techniques used Compatible cloud

manager Prog. Model Solved problem Type of fault handled

Mantis Preemptive migration Universal Ruby and Python Load balancing in optical
network environments Communication

FT-FW Preemptive migration Universal Not informed by the authors Fault tolerance for firewalls Communication

949 Fault Tolerance Systems in Cloud– A Systematic Review

Query Report

Q1 Provide Article Type

Q2 Provide full name of the authors

Q3 Provide Short title for the Article

Q4 Cross-check for accuracy/data/format, correct, and provide all references in consistent APA format. Sample reference
formatted to act as an example and to maintain consistency of format (APA) required

Chandra, S., Sikdar, P. K., & Kumar, V. (1995). Dynamic PCU estimation of capacity on urban roads. Journal of Indian Roads
Congress, 23, 17–28.
Chandra, S. (2004). Capacity estimation procedure for two-lane roads under mixed traffic conditions. Journal of Indian Roads
Congress, 165(1), 139–170.”

Fault-Tolerant Stateful Firewall (FT-FW)
Literature (Sambath et al., 2019) designed a firewall system
with fault tolerance support. Table 7 summarizes the main
characteristics of the system.

This section presents the results obtained through
the analysis of selected articles in SLR. We also sought to
identify whether the proposal was geared towards a specific
manager whenever possible. Although this information was
only sometimes available, it was possible to identify that
most of the proposals present solutions compatible with the
OpenStack manager (Premalatha & Sujatha, 2021).

Conclusions
The classification was made to create a document that can
help people decide which solution for handling failures in
a cloud computing system is more adequate or efficient for
the problem faced. A brief introduction was included for
each solution described, which aims to explain the purpose
of creating the solution, and a summary table that aims to
objectively show the main information about it for quick
reference. The work also provides information regarding
the state of the art (in general) regarding fault tolerance in
cloud computing environments. Regarding the objectives
proposed in this work, it can be considered that they were
achieved since the objective description of each solution
was presented, in addition to the creation of a summary
table with information that seeks to help in choosing a fault-
tolerant system, concluding with the creation of a web site
to consult the information in the summary tables in a more
practical and accessible way.

Acknowledgment
We are thankful to the management of Emerald Heights
College For Women, Ooty, India, and Dr.G.R. Damodaran
College of Science, Coimbatore, India, for conducting this
collaborative study.

Conflict of Interest
Authors have no Conflict of Interest.

References
Anton Gulenko, Marcel Wallschläger, Florian Schmidt, Odej Kao,

Feng Liu. (2016). A system architecture for real-time anomaly
detection in large-scale nfv systems. Procedia Computer
Science, Elsevier, 94, 491–496.

Datta, A.; Cho, W. H. Swifter. (2016): Elastic erasure coded storage
system. In: IEEE. Reliable Distributed Systems (SRDS), 2016
IEEE 35th Symposium on. [S.l.], 229–238.

Gonzalez, J. L. et al. (2015). Skycds: A resilient content delivery
service based on diversified cloud storage. Simulation
Modelling Practice and Theory, Elsevier, 54, 64–85.

Hideya Nakanishi, Ohsuna Masaki, Kojima Mamoru, Imazu Setsuo,
Nonomura Miki, Emoto Masahiko, Yamamoto Takashi,
Nagayama Yos. (2014). Revised cloud storage structure for
light-weight data archiving in lhd. Fusion Engineering and
Design, Elsevier, 89(5), 707–711.

J.L. Gonzalez, Jesus Carretero Perez, Victor Sosa-Sosa, Juan F.
Rodriguez Cardoso, Ricardo Marcelin-Jimenez. (2013).
An approach for constructing private storage services as
a unified fault-tolerant system. Journal of Systems and
Software, Elsevier, 86(7), 1907–1922.

Javadi, B.; Abawajy, J.; Buyya, R. (2012). Failure-aware resource
provisioning for hybrid cloud infrastructure. Journal
of parallel and distributed computing, Elsevier, 72(10),
1318–1331.

Javier Povedano-Molina, Jose M. Lopez-Vega, Juan M. Lopez-
Soler, Antonio Corradi, Luca Foschini. (2013). Dargos: A
highly adaptable and scalable monitoring architecture for
multi-tenant clouds. Future Generation Computer Systems,
Elsevier, 29(8), 2041–2056.

Lu Lu, Xuanhua Shi, Hai Jin, Qiuyue Wang, Daxing Yuan, Song
Wu. (2015). Morpho: A decoupled mapreduce framework
for elastic cloud computing. Future Generation Computer
Systems, Elsevier, 36, 80–90.

Mell, P.; Grance, T. (2011). The NIST definition of cloud computing.
Computer Security Division, Information Technology
Laboratory, National Institute of Standards and Technology
Gaithersburg, 19, 23 - 25.

N. Premalatha and S. Sujatha. (2021). An Effective Ensemble
Model to Predict Employment Status of Graduates in
Higher Educational Institutions, 2021 Fourth International
Conference on Electrical, Computer and Communication
Technologies (ICECCT), Erode, India, 2021, 1-4, doi: 10.1109/
ICECCT52121.2021.9616952.

S. Sambath Kumar, S. Devi, (2020). Image Privacy Preservation
using AES With Salt Key and Gaussian Blur Algorithms with
the Application of Data Perturbation in Cloud, International
Journal of Innovative Technology and Exploring Engineering,
9(3), 729-735.

S. Sujatha, N. Sudha Bhuvaneswari and R. Yamuna, (2010).
Paradigm for integrating Web Services and agent technology
with RSA and Digigeo, 2010 International Conference on
Communication and Computational Intelligence (INCOCCI),
Erode, India, 603-608.

Selimi M, Lertsinsrubtavee A, Sathiaseelan A, Cerdà-Alabern L
and Navarro L. (2019). PiCasso: Enabling information-centric
multi-tenancy at the edge of community mesh networks.
Computer Networks: The International Journal of Computer
and Telecommunications Networking. 164:C. Online
publication date: 9-Dec-2019.

Ting Wang, Zhiyang Su, Yu Xia, Jogesh Muppala, Mounir Hamdi.
(2015). Designing efficient high performance server-centric
data center network architecture. Computer Networks,
Elsevier, 79, 283–296.

Vasile, M.-A. et al. (2015). Resource-aware hybrid scheduling
algorithm in heterogeneous distributed computing. Future
Generation Computer Systems, Elsevier, 51, 61–71.

Vijayakumar, D.; Srinivasagan, K.; Sabarimuthukumar, R. (2015) Fir3:
A fuzzy inference based reliable replica replacement strategy
for cloud data centre. In: IEEE. Computing and Network
Communications (CoCoNet), 2015 International Conference
on. [S.l.], 473–479.

Xuyun Zhang, Chang Liu, Surya Nepal, Chi Yang, Wanchun Dou,
Jinjun Chen. (2014). A hybrid approach for scalable sub-tree
anonymization over big data using mapreduce on cloud.
Journal of Computer and System Sciences, Elsevier, 80(5),
1008–1020.

