Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.48Keywords:
Python-based social science applications, High-performance computing systems, task and data parallelism, Optimization methodology, Machine learning model evaluationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research addresses the pressing need to optimize Python-based social science applications for high-performance computing (HPC)Abstract
systems, emphasizing the combined use of task and data parallelism techniques. The paper delves into a substantial body of research,
recognizing Python’s interpreted nature as a challenge for efficient social science data processing. The paper introduces a Python
program that exemplifies the proposed methodology. This program uses task parallelism with multi-processing and data parallelism
with dask to optimize data processing workflows. It showcases how researchers can effectively manage large datasets and intricate
computations on HPC systems. The research offers a comprehensive framework for optimizing Python-based social science applications
on HPC systems. It addresses the challenges of Python’s performance limitations, data-intensive processing, and memory efficiency.
Incorporating insights from a rich literature survey, it equips researchers with valuable tools and strategies for enhancing the efficiency
of their social science applications in HPC environments.
How to Cite
Downloads
Similar Articles
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Selvi, T. S. Poornappriya, R. Balasubramani, Cloud computing research productivity and collaboration: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, ESPoW: Efficient and secured proof of ownership method to enable authentic deduplicated data access in public cloud storage , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jyoti Vishwakarma, Sunil Kumar, Mapping Research on ESG Disclosure and Firm Performance: A Systematic Bibliometric Analysis , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ECE cipher: Enhanced convergent encryption for securing and deduplicating public cloud data , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

