IoT based home automation with energy management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.45Keywords:
Home automation, IoT, Raspberry-Pi-3, Embedded systems, Wi-Fi.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Automation of home appliances has become the prime utility of embedded systems. This automation method is inclusive of a sensor-based automated system that requires no human/conventional interventions. This paper proposes the usage of voice commands to have control over the entire appliances, which is easy to handle by old age/disabled people. The major aspect of this paper is to introduce a new system for disabled and normal people. This method involves a Raspberry-Pi-3 control board, which has a WiFi module termed Raspberry-Pi-3. For sending the voice instruction to the Raspberry-Pi-3 a mobile application is used. The function of the application is to record the voice and convert the voice note into a command for Raspberry-Pi-3. This process is facilitated by WiFi communication. This system also uses IoT for measuring the power consumed by the active appliance over the current sensor and the Webserver can preview the power consumption.Abstract
How to Cite
Downloads
Similar Articles
- Indraji C, Dominic J, Access of web OPAC through library automation in university libraries in Tamil Nadu: A study , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- B Bindu, Srikanth N, Haris Raja V, Barath Kumar JK, Dharmendra R, Comparative analysis of inverted pendulum control , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jonah, Danush Kumar SM, Yugeshkrishnan M, Santhoshkumar K, Shahid Gaffa, Satellite hardfacing of mild steel using robotic mig welding , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- N.S.G. Ganesh, V Arulkumar, R. Lathamanju, Priscilla Joy , Energetic and highly reliable photovoltaic power source assisted water pump control system design using IoT , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S Prabhakaran, Yugeshkrishnan M, Santhiya M, Danush Kumar S M, Smart Dustbin using IOT , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.