Prediction of automobile insurance fraud claims using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.29Keywords:
Prediction, Automobile, Insurance, Fraud claims, Machine learning, Fraud detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Automobile insurance fraud is a significant issue for insurance firms, causing financial losses and higher premiums for policyholders. This study aims to create a predictive model for accurately identifying potential vehicle insurance fraud claims. Understanding fraud detection processes and operationalizing information communication technology is crucial for implementing corrective actions, but personally reviewing insurance claims is time-consuming and costly. This study explored machine learning algorithms to detect fraudulent vehicle insurance claims. The research evaluated AdaBoost, XGboostNB, SVM, LR, DT, ANN, and RF. AdaBoost and XGBoost classifiers outperformed other models with 84.5% classification accuracy, while LR classifiers performed poorly with balanced and unbalanced data. The ANN classifier performed better with unbalanced data. Performance evaluation metrics such as accuracy, precision, recall, and F1 score are utilized to assess the effectiveness of the models. The results demonstrate the effectiveness of machine learning in distinguishing between genuine and fraudulent claims, providing insurance companies with a powerful tool to proactively combat fraud and improve their overall risk management strategies. The findings of this research contribute to the insurance industry’s efforts to enhance fraud detection systems, reduce financial losses, and offer more competitive insurance premiums to honest policyholders.Abstract
How to Cite
Downloads
Similar Articles
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Jabeen, AR Mohamed Shanavas, Bradley Terry Brownboost and Lemke flower pollinated resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A Deterministic Inventory Model with Automation-Enabled Processes for Defective Item Management , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Dhruvina A Dabgar, Zankhana Pandit, Molecular Foundations of Life: An Integrated Study of Cell Biology and Genetics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Rashmi Chandra, Afroz Alam, Phytochemical Analysis Using X-ray Diffraction Spectroscopy (XRD) and GC-MS Analysis of Bioactive Compounds in Cucumis sativus L. (Angiosperms; Cucurbitaceae) , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Partha Majumdar, Empowering skill development through generative AI bridging gaps for a sustainable future , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Maheshbhai R. Jakhotra, Sanjay Gupta, A Study on the Design and Effectiveness of a Spoken English Program for Gujarati Medium Secondary School Students (Aged 14–15) , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- N. Yogalakshmi, Awareness on environmental issues and sustainable practices among college students - with special reference to Chennai city region , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.

