Prediction of automobile insurance fraud claims using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.29Keywords:
Prediction, Automobile, Insurance, Fraud claims, Machine learning, Fraud detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Automobile insurance fraud is a significant issue for insurance firms, causing financial losses and higher premiums for policyholders. This study aims to create a predictive model for accurately identifying potential vehicle insurance fraud claims. Understanding fraud detection processes and operationalizing information communication technology is crucial for implementing corrective actions, but personally reviewing insurance claims is time-consuming and costly. This study explored machine learning algorithms to detect fraudulent vehicle insurance claims. The research evaluated AdaBoost, XGboostNB, SVM, LR, DT, ANN, and RF. AdaBoost and XGBoost classifiers outperformed other models with 84.5% classification accuracy, while LR classifiers performed poorly with balanced and unbalanced data. The ANN classifier performed better with unbalanced data. Performance evaluation metrics such as accuracy, precision, recall, and F1 score are utilized to assess the effectiveness of the models. The results demonstrate the effectiveness of machine learning in distinguishing between genuine and fraudulent claims, providing insurance companies with a powerful tool to proactively combat fraud and improve their overall risk management strategies. The findings of this research contribute to the insurance industry’s efforts to enhance fraud detection systems, reduce financial losses, and offer more competitive insurance premiums to honest policyholders.Abstract
How to Cite
Downloads
Similar Articles
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Manisha Anil Vhora, Vidya Bhandwalkar, Prashant Mangesh Rege, AI-driven HR analytics: Enhancing decision-making in workforce planning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Priya Thapliyal, Pallavi Dheer, Satish Chandra Nautiyal, Rajesh Rayal, Rakesh Rai, Indra Rautela, Comparative Study of Fast Plaque Assay and Real Time PCR for Detection of Mycobacterium tuberculosis in Pulmonary Samples , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Richa Sharma, Shrutimita Mehta, Resilience in Resisting Spaces: Cross-Cultural Gender Identity in “Before We Visit the Goddess” , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sohini Bhattacharyya, Ajay Kumar Harit, Manoj Singh, Urvashi Sharma, Chaitramayee Pradhan, Occurrence of Antibiotic Resistance in Lotic Ecosystems , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.