Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.24Keywords:
Coronary artery disease, Artificial Intelligence, Machine learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Coronary artery disease (CAD) is a common type of cardiovascular disease with a high mortality rate worldwide. As symptoms may not be recognized until, after the cardiac attack, early diagnosis and treatment are critical to lowering mortality. The proposed study focuses on the creation of an intelligent ensemble system for the accurate detection of CAD. This paper presents the hybrid feature selection method based on Lasso, random forest-based boruta, and recursive feature elimination methods. The significance of a feature is determined by the score each approach provides. Machine learning techniques such as random forest, support vector machine, K-nearest neighbor, logistic regression, decision tree, and Naive Bayes are developed as base classifiers. Then, ensemble techniques like bagging and boosting models are created using base classifiers. The Z-Alizadeh Sani dataset was used to build and test the model. The bagged random forest model achieved 97.6% accuracy and 100% recall. The CatBoost model achieved 97.7% accuracy and 99.0% recall. Compared to traditional classifiers, the ensemble models achieved higher accuracy and can be used to assist clinicians in diagnosing coronary artery diseaseAbstract
How to Cite
Downloads
Similar Articles
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Karthik Gangadhar, Prem Kumar N, Neuroprotective activity of alcoholic extract of Operculina turpethum roots in aluminum chloride-induced Alzheimer’s disease in rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Hemang Shah, Archana Gadekar, Artificial intelligence and intellectual property rights with special reference to patent and copyright , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper