Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.24Keywords:
Coronary artery disease, Artificial Intelligence, Machine learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Coronary artery disease (CAD) is a common type of cardiovascular disease with a high mortality rate worldwide. As symptoms may not be recognized until, after the cardiac attack, early diagnosis and treatment are critical to lowering mortality. The proposed study focuses on the creation of an intelligent ensemble system for the accurate detection of CAD. This paper presents the hybrid feature selection method based on Lasso, random forest-based boruta, and recursive feature elimination methods. The significance of a feature is determined by the score each approach provides. Machine learning techniques such as random forest, support vector machine, K-nearest neighbor, logistic regression, decision tree, and Naive Bayes are developed as base classifiers. Then, ensemble techniques like bagging and boosting models are created using base classifiers. The Z-Alizadeh Sani dataset was used to build and test the model. The bagged random forest model achieved 97.6% accuracy and 100% recall. The CatBoost model achieved 97.7% accuracy and 99.0% recall. Compared to traditional classifiers, the ensemble models achieved higher accuracy and can be used to assist clinicians in diagnosing coronary artery diseaseAbstract
How to Cite
Downloads
Similar Articles
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Assessing students’ perception of the academic features of the Gyankunj Project , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- K. P. SINGH, NIDHI TRIPATHI, ANTIPSYCHOTIC MEDICATION DURING PREGNANCY AND POSSIBLE BIRTH DEFECTS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Sathiyavathi, V. Mathivannan, Selvi. Sabhanayakam, Cd4+ CELL COUNTS IN THE PATIENTS OF HIV INFECTED IN SALEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Aishwarya Jha, Jyoti Gangta, Neha Kapur, Comparison of anterior corneal aberrometry, keratometry and pupil size with Scheimpflug tomography and ray tracing aberrometer in moderate and high refractive error , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Gourav Kalra, Arun Kumar Gupta, Multi-response Optimization of Machining Parameters in Inconel 718 End Milling Process Through RSM-MOGA , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- E. J. David Prabahar, J. Manalan, J. Franklin, A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper

