Social science education based on local wisdom in forming the character of students
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.22Keywords:
Project-based learning, Local wisdom, Social science subjects, Critical thinking, Self-efficacy.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research was conducted to determine the impact of project-based learning with local wisdom in teaching social science subjects to increase critical thinking ability moderated by students’ self-efficacy. This experimental research employed a quantitative approach utilizing a probability sampling technique with a clustered sampling method to select particular groups within a population. Thus, as a sample, class XI IPS 2 was chosen as a control group and XI IPS 3 as an experimental one. The test results showed that each of the instruments was valid and reliable and met the classical assumptions. The indicated that project-based learning with local wisdom moderated with good self-efficacy can improve critical thinking ability. The integration of project-based learning with local wisdom into learning is necessary so that the methods applied by teachers not only focus on academic results but also inculcate the values of local wisdom. Therefore, it would be better if teachers at every level could integrate an approach to learning that incorporates local wisdomAbstract
How to Cite
Downloads
Similar Articles
- Surender Singh, Rachna Thakur, Suchitra Devi, Globalization and Indian Negotiation on Agriculture , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- M. Merla Agnes Mary, S. Britto Ramesh Kumar, DAJO: A Robust Machine Learning–Based Framework for Preprocessing and Denoising Fetal ECG Signals , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.

