A machine translation model for abstractive text summarization based on natural language processing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.20Keywords:
Machine translation model, Natural language processing, Summarization, Text.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
“Knowledge is power and knowledge is liberating” conveys that there is a need for the capacity for creativity and that information is plentiful. The key application of natural language processing (NLP) is text summarization. It is a well-known technique for copying text, selecting accurate content, and get insight from the text. The purpose of this study is to propose for providing a summary of the text employing the seq2seq concept from the TensorFlow Python library. Through the use of deep learning-based data augmentation, the suggested method has the potential to increase the effectiveness of the text summary. Finally, the bilingual evaluation understudy (BLEU) criterion is used to judge the effectiveness of the suggested methodologyAbstract
How to Cite
Downloads
Similar Articles
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deneshkumar V, Jebitha R, Jithu G, Multistate modeling for estimating clinical outcomes of COVID-19 patients , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sukhada S. Prabhu, Anuprita M. Thakur, Evaluating the Responsiveness of Hindi version of International Physical Activity Questionnaire-Long Form (IPAQ-LF) in healthy adults. , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Vnuchko, O. Batrymenko, О. Ткach, М. Karashchuk, M. Volkivskyi, Models of interaction between business and government in the conditions of the European integration course of Ukraine , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- L. Praveen Kumar, Vajha S. Kumar, Periods and periodic points of linear cellular automata , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 29 30 31 32 33 34 35 36 37 > >>
You may also start an advanced similarity search for this article.

