A machine translation model for abstractive text summarization based on natural language processing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.20Keywords:
Machine translation model, Natural language processing, Summarization, Text.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
“Knowledge is power and knowledge is liberating” conveys that there is a need for the capacity for creativity and that information is plentiful. The key application of natural language processing (NLP) is text summarization. It is a well-known technique for copying text, selecting accurate content, and get insight from the text. The purpose of this study is to propose for providing a summary of the text employing the seq2seq concept from the TensorFlow Python library. Through the use of deep learning-based data augmentation, the suggested method has the potential to increase the effectiveness of the text summary. Finally, the bilingual evaluation understudy (BLEU) criterion is used to judge the effectiveness of the suggested methodologyAbstract
How to Cite
Downloads
Similar Articles
- Bayelign A. Zelalem, Ayalew A. Abebe, Evaluating supply chain management practice among micro and small manufacturing enterprise in southwest, Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. R. R. Prakash, Kishore Kunal, Designing information systems for business administration through human and computer interaction , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Suresh L. Chitragar, Occupational Structure of Population in the Malaprabha River Basin, Karnataka State, India; A Geographical Approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.