Automatic liver tumor segmentation from CT images using random forest algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.19Keywords:
Random forest, Convolutional neural network, Artificial neural network, Liver tumor, Segmentation, Gabor filter.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Automatic liver segmentation is challenging, and the tumor segmenting process adds more complexity. Based on the grey levels and shape, separating the liver and tumor from abdominal CT images is critical. In our paper suggests a more effective approach by using Gabor features (GF) to segment liver tumors from CT images and three alternative neural network algorithms to address these problems: RF, CNN and ANN. This thesis uses the same collection of classifiers and GF to first segment a variety of Gabor liver images. The organ (liver) is then extracted from an abdominal CT image using liver segmentation, which is done by three classifiers: ANN, CNN, RF trained on Gabor filter and the tumor segmentation is done by the human visual system (HVS). For pixel-wise segmentation, reliable and accurate ML techniques were used. For the liver segmentation, the classification accuracy was 99.55, 97.88 and 98.13% for RF, CNN and ANN, respectively. From the extracted image of liver, the classification accuracy for tumor was 99.52, 98.07 and 98.45% for RF, CNN and ANN, respectively.Abstract
How to Cite
Downloads
Similar Articles
- Venkatesh R, A study on women empowerment by enhancing saving capabilities – through self-help groups , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

