Influence node analysis based on neighborhood influence vote rank method in social network
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.69Keywords:
Social Networks, Vote ScoreDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Social Networks are used for various purposes like advertising, product launches, sentiment analysis, opinion mining, and event detection etc. Terrorist targets social network users to spread the terrorism. Influence analysis is used in social networks to find the influence of users and the impact of the messages, mainly for advertising. In this research, the Neighborhood Influence – Vote Rank (NI-VR) method is proposed to analyze the terrorism and social network datasets temporally to find the influence node in Social networks. The Global Terrorism Dataset (GTD) was used to analyze the terrorism activity and temporal analysis on Social Network data to find the influence node. The Neighborhood node influence is measured and considered in the Social Network data to effectively find the influence node. The nodes’ vote score and vote ability were measured to rank the nodes based on influence. The neighborhood influence is measured to update the vote score and vote ability based on influence value. The neighborhood influence method is applied to rank the node has the advantage of analyzing the probability of affected nodes and recover nodes that help to effectively find the influence nodes. The outcomes illustrate that the proposed NI-VR achieved a maximum spread influence of 843 and the existing Greedy method has a higher spread influence of 840 in influence node analysis.Abstract
How to Cite
Downloads
Similar Articles
- Panda Aditi Ambarish, Kaushik Trivedi, Immersive learning: A virtual reality teaching model for enhancing english speaking skills , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Seema Yadav, Implementation of Human Rights: An Universal Challenge Towards Humanity , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Joji John Panicker, Ancy Elezabath John, Nair Anup Chandrasekharan, A tapestry of tradition: Revitalization of Indian Heritage and Folk Art , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Ruchira P Dudhrejiya, A critical analysis of power dynamics in Vijay Tendulkar's theatrical tapestry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Sapna Pathakji, Shilpi Sharma, Transgender Persons (Protection of Rights) Act, 2019: A critical evaluation of rights access and implementation for the transgender community in India , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shailyba Baldevsinh Vala, Manoj Sharma, Analyzing leadership practices among NGOs in Gujarat: A study , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

