Application of support vector classifier for mango leaf disease classification
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.16Keywords:
Mango Leaf Disease, Support Vector Machine, Feature Extraction, Machine Learning, Support Vector Classifier.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In India, Mango is the fruit of high economic and ecological importance as it exports in large quantities. 1000 varieties of mangoes are cultivated and mostly supported commercially. Among all the Indian fruits, mangoes are highly demand. In majority of the Indian region, mango crops are suffering from several diseases that reduce both the production and the quality and parallel reduces its value on the international market. Mangoes are highly affected by number of diseases, which hamper its appearance, taste and has huge impact on the economy the Indian commercial growth rate has not raised. Manually identifying those disease is a complex task and time consuming, since lack of knowledge, poverty, infrastructure and the facilities the identification of the disease in earlier stages are not done by the farmers. In recent years, the plant pathologists apply different techniques to identify the diseases but then again these techniques are time consuming and relatively expensive for mango growers and the solutions proposed are often not very accurate and sometimes biased. The disease has to diagnosed in order to provide solution to the farmers to increase the productivity with high quality. Currently, researchers have proposed several solutions to diagnosis of mango diseases automatically to gain high returns. The use of machine learning algorithms to identify diseases of plants from leaf photos is a very exciting field for advancement and research has carried in the proposed system using Support vector machine. Using non-linear SVC, achieved the accuracy of 88% for the dataset.Abstract
How to Cite
Downloads
Similar Articles
- Ravindra K. Kushwaha, Sonia Patel, Sarfaraz Ahmad, Indian education through a G20 lens-Ensuring continuity of sustainable development , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Elizabeth Mize, A critical analysis of the continuing professional development of teachers in India through the lens of NEP 2020 , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Global student mobility from Southeast Asia and South Asia: Trends, challenges, and policy interventions , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Esther Princess G, Navigating the challenges of moonlighting: A study of employee experiences in the FMCG sector in India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Abhishek K Pandey, Amrita Sahu, Ajay K Harit, Manoj Singh, Nutritional composition of the wild variety of edible vegetables consumed by the tribal community of Raipur, Chhattisgarh, India , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ellakkiya Mathanraj, Ravi N. Reddy, Enhanced principal component gradient round-robin load balancing in cloud computing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 > >>
You may also start an advanced similarity search for this article.

